A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit...A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.展开更多
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ...Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The CFD-DEM model was developed to simulate solid exchange behavior between two half beds in a bench-scale two-dimensional dual-leg fluidized bed (DL-FB). Power spectrum density (PSD) analysis was applied to obtai...The CFD-DEM model was developed to simulate solid exchange behavior between two half beds in a bench-scale two-dimensional dual-leg fluidized bed (DL-FB). Power spectrum density (PSD) analysis was applied to obtain the dominant frequency (F) of the simulated differential particle number (APLR) between the two half beds. Effects of fluidization velocity (u) and bed material inventory (H) on the solid exchange behavior were studied using the CFD-DEM model. Not only snapshots of the simulated particle flow patterns using the OpenGL code but also the dominant frequency of APLR was similar to the experimental results. The simulation results show that higher fluidization velocity assists the exchange of more particles between the two half beds, but the dispersion of clusters on the bed surface into single particles decreases the cluster exchange frequency. A greater bed material inventory results in more intense cluster exchange. The cluster exchange frequency decreases with an increase of the bed material inventory.展开更多
基金Projects(11372055,11302033)supported by the National Natural Science Foundation of ChinaProject supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology,ChinaProject(2012KFJJ02)supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle,Education Department of Hunan Province,China
文摘A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.
基金supported by the Natural Sciences and Engineering Research Council of Canada through Discovery Grant 341275 (G. Grasselli) and Engage EGP 461019-13
文摘Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金the support provided by the National Science and Technology Support Program of China(No.2012BAA02B00)
文摘The CFD-DEM model was developed to simulate solid exchange behavior between two half beds in a bench-scale two-dimensional dual-leg fluidized bed (DL-FB). Power spectrum density (PSD) analysis was applied to obtain the dominant frequency (F) of the simulated differential particle number (APLR) between the two half beds. Effects of fluidization velocity (u) and bed material inventory (H) on the solid exchange behavior were studied using the CFD-DEM model. Not only snapshots of the simulated particle flow patterns using the OpenGL code but also the dominant frequency of APLR was similar to the experimental results. The simulation results show that higher fluidization velocity assists the exchange of more particles between the two half beds, but the dispersion of clusters on the bed surface into single particles decreases the cluster exchange frequency. A greater bed material inventory results in more intense cluster exchange. The cluster exchange frequency decreases with an increase of the bed material inventory.