The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw...The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.展开更多
The paper presents a new method for classifying the stress modes in hybrid stress finite element in terms of natural stress modes in finite element and the rank analysis of matrix G in forming element It reveals the r...The paper presents a new method for classifying the stress modes in hybrid stress finite element in terms of natural stress modes in finite element and the rank analysis of matrix G in forming element It reveals the relation among the different assumed stress field, and gives the general method in forming stress field Comparing with the method of eigenvalue analysis, the new method is more efficient展开更多
By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method...By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.展开更多
The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identica...The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.展开更多
A new kind of quadrilateral assumed stress hy- brid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is est...A new kind of quadrilateral assumed stress hy- brid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is established by expanding the essential terms of the assumed stress field as polynomials in the natural coordinates of the element. The homogeneous equilibrium equations are imposed in a variational sense through the internal displacements which are also expanded in the natural coordinates, while the tractionfree conditions along the inclined side are satisfied exactly. The use of such special element in the finite element solution is shown to be highly accurate when only a very coarse element mesh is used for plates with V-shaped rounded notches or inclined sides.展开更多
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f...This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.展开更多
The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads...The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q(4)-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i.e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q(4)-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q(4)-element.展开更多
A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hy...A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.展开更多
In this paper the equivalence of the generalized hybrid element and the modified Wilson element, which is derived by the generalized hybrid method, is proved.
A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation sy...A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.展开更多
A hybrid monotonous finite element algorithm is developed in the present paper, based on a second-order-accurate finite element scheme and a first-accurate monotonous one derived from the former by a unilateral lumpin...A hybrid monotonous finite element algorithm is developed in the present paper, based on a second-order-accurate finite element scheme and a first-accurate monotonous one derived from the former by a unilateral lumping procedure in one dimensional case. The switch functions for the two dimensional Euler equation system are constructed locally, based on the gradient of the flow field, with special consideration on the information from neighboring elements. Examples show that the new scheme can eliminate oscillations near strong shocks obviously.展开更多
The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And...The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived. Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.展开更多
We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements an...We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger–Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system.Compared with the natural element method(NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems.展开更多
A set of basic deformation modes for hybrid stress finite elements are directly derived from the element displacement field. Subsequently, by employing the so-called united orthogonal conditions, a new orthogonalizati...A set of basic deformation modes for hybrid stress finite elements are directly derived from the element displacement field. Subsequently, by employing the so-called united orthogonal conditions, a new orthogonalization method is proposed. The result- ing orthogonal basic deformation modes exhibit simple and clear physical meanings. In addition, they do not involve any material parameters, and thus can be efficiently used to examine the element performance and serve as a unified tool to assess different hybrid elements. Thereafter, a convenient approach for the identification of spurious zero-energy modes is presented using the positive definiteness property of a flexibility matrix. More- over, based on the orthogonality relationship between the given initial stress modes and the orthogonal basic deformation modes, an alternative method of assumed stress modes to formulate a hybrid element free of spurious modes is discussed. It is found that the orthogonality of the basic deformation modes is the sufficient and necessary condition for the suppression of spurious zero-energy modes. Numerical examples of 2D 4-node quadrilateral elements and 3D 8-node hexahedral elements are illustrated in detail to demonstrate the efficiency of the proposed orthogonal basic deformation mode method.展开更多
In this paper a new quadrilateral plate element concerning the effect of transverse shear strain has been presented. It is derived from the hybrid finite element model based on the principles of virtual work. The outs...In this paper a new quadrilateral plate element concerning the effect of transverse shear strain has been presented. It is derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element is to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really whilc the least degrees of freedom is employed.A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.展开更多
This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress...This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.展开更多
On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualiza...On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.展开更多
The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The co...The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed. Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in comer and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.展开更多
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
文摘The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.
文摘The paper presents a new method for classifying the stress modes in hybrid stress finite element in terms of natural stress modes in finite element and the rank analysis of matrix G in forming element It reveals the relation among the different assumed stress field, and gives the general method in forming stress field Comparing with the method of eigenvalue analysis, the new method is more efficient
文摘By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.
文摘The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.
文摘A new kind of quadrilateral assumed stress hy- brid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is established by expanding the essential terms of the assumed stress field as polynomials in the natural coordinates of the element. The homogeneous equilibrium equations are imposed in a variational sense through the internal displacements which are also expanded in the natural coordinates, while the tractionfree conditions along the inclined side are satisfied exactly. The use of such special element in the finite element solution is shown to be highly accurate when only a very coarse element mesh is used for plates with V-shaped rounded notches or inclined sides.
文摘This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.
文摘The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q(4)-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i.e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q(4)-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q(4)-element.
基金supported by the National Natural Science Foundation of China (10872108,10876100)the Program for New Century Excellent Talents in University (NCET-07-0477)the National Basic Research Program of China (2010CB832701)
文摘A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.
基金The project is supported by the National Natural Science Foundation of China
文摘In this paper the equivalence of the generalized hybrid element and the modified Wilson element, which is derived by the generalized hybrid method, is proved.
基金Project supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.
文摘A hybrid monotonous finite element algorithm is developed in the present paper, based on a second-order-accurate finite element scheme and a first-accurate monotonous one derived from the former by a unilateral lumping procedure in one dimensional case. The switch functions for the two dimensional Euler equation system are constructed locally, based on the gradient of the flow field, with special consideration on the information from neighboring elements. Examples show that the new scheme can eliminate oscillations near strong shocks obviously.
文摘The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived. Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.
基金supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger–Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system.Compared with the natural element method(NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems.
基金Project supported by the National Natural Science Foundation of China(No.10972188)the Fundamental Research Funds for the Central Universities of China(No.2010121073)the Scientific Program of Fujian Province of China(No.2007F3096)
文摘A set of basic deformation modes for hybrid stress finite elements are directly derived from the element displacement field. Subsequently, by employing the so-called united orthogonal conditions, a new orthogonalization method is proposed. The result- ing orthogonal basic deformation modes exhibit simple and clear physical meanings. In addition, they do not involve any material parameters, and thus can be efficiently used to examine the element performance and serve as a unified tool to assess different hybrid elements. Thereafter, a convenient approach for the identification of spurious zero-energy modes is presented using the positive definiteness property of a flexibility matrix. More- over, based on the orthogonality relationship between the given initial stress modes and the orthogonal basic deformation modes, an alternative method of assumed stress modes to formulate a hybrid element free of spurious modes is discussed. It is found that the orthogonality of the basic deformation modes is the sufficient and necessary condition for the suppression of spurious zero-energy modes. Numerical examples of 2D 4-node quadrilateral elements and 3D 8-node hexahedral elements are illustrated in detail to demonstrate the efficiency of the proposed orthogonal basic deformation mode method.
文摘In this paper a new quadrilateral plate element concerning the effect of transverse shear strain has been presented. It is derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element is to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really whilc the least degrees of freedom is employed.A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.
文摘This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.
文摘On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.
基金National Natural Science Foundation of China (50608024 and 50538050).
文摘The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed. Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in comer and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.