期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
共找到396篇文章
< 1 2 20 >
每页显示 20 50 100
Numerical study of the semi-circular bend dynamic fracture toughness test using discrete element models 被引量:4
1
作者 ZHAO GaoFeng KAZERANI Tohid +2 位作者 MAN Ke GAO Mz ZHAO Jian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第9期1587-1595,共9页
The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measureme... The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measurements is investigated. It is found that friction between loading plates and the rock specimen affects the test results. Therefore, friction must be carefully considered to obtain accurate measurements. The simulation results also show that in contrast to the 2D model in which a rate-dependent cohesive law must be introduced, 3D models with a rate-independent law can produce good results. Furthermore, the study suggests that test measurements are seriously affected by specimen thickness; thus, full 3D modeling is required for simulation of the SCB test. 展开更多
关键词 dynamic fracture toughness ROCK discrete element model FRICTION
原文传递
Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffolds
2
作者 Erica Farina Dario Gastaldi +4 位作者 Francesco Baino Enrica Verne Jonathan Massera Gissur Orlygsson Pasquale Vena 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第2期292-306,共15页
In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibe... In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibers along two perpendicular directions on parallel layers with a 90°tilting between two adjacent layers.A parametric study is first presented with the purpose to assess the effect of the major design parameters on the elastic and strength properties of the scaffold;the mechanical properties of the 3D printed scaffolds are eventually estimated by using the\i-CT data with the aim of assessing the effect of defects on the final geometry which are intrinsic in the manufacturing process.The macroscopic elastic modulus and strength of the scaffold are determined by simulating a uniaxial compressive test along the direction which is perpendicular to the layers of the printed fibers.An iterative approach has been used in order to determine the scaffold strength.A partial validation of the computational model has been obtained through comparison of the computed results with experimental values presented in[10]on a ceramic scaffold having the same geometry.All the results have been presented as non-dimensional values.The finite element analyses have shown which of the selected design parameters have the major effect on the stiffness and strength,being the porosity and fiber shifting between adjacent layers the most important ones.The analyses carried out on the basis of the/x-C7 data have shown elastic modulus and strength which are consistent with that found on ideal geometry at similar macroscopic porosity. 展开更多
关键词 Bioactive glass Scaffold porosity Finite element model μ-CT
原文传递
Finite element approach for free vibration and transient response of bi-directional functionally graded sandwich porous skew-plates with variable thickness subjected to blast load
3
作者 Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期83-104,共22页
At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The who... At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load. 展开更多
关键词 Finite element modeling Hygro-thermal environment Variable thickness Free and forced vibration Visco-elastic foundation Skew-plate
下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks
4
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus Discrete element model(DEM) Convolutional neural networks(CNNs) Evaluation of error
下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
5
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization Finite element modeling Convolutional neural network
下载PDF
Dynamic finite element model updating using meta-model and genetic algorithm 被引量:3
6
作者 费庆国 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期213-217,共5页
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori... Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%. 展开更多
关键词 finite element model model updating response surface model genetic algorithm
下载PDF
Autologous nerve graft repair of different degrees of sciatic nerve defect:stress and displacement at the anastomosis in a three-dimensional finite element simulation model 被引量:1
7
作者 Cheng-dong Piao Kun Yang +1 位作者 Peng Li Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期804-807,共4页
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the ... In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting. 展开更多
关键词 nerve regeneration sciatic nerve injury autologous nerve grafting epineurial suturing three-dimensional finite element models load stress DISPLACEMENT neural regeneration
下载PDF
Conversion between solid and beam element solutions of finite element method based on meta-modeling theory:development and application to a ramp tunnel structure 被引量:1
8
作者 JASC Jayasinghe M. Hori +2 位作者 MR Riaz MLL Wijerathne T Ichimura 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期297-309,共13页
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ... In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end. 展开更多
关键词 meta-modeling theory finite element method solid and beam element models continuum mechanics structural mechanics
下载PDF
Substitution for In Vitro and In Vivo Tests:Computational Models from Cell Attachment to Tissue Regeneration 被引量:1
9
作者 Hao Huang Chaozong Liu +4 位作者 Teng Yi Maryam Tamaddon Shanshan Yuan Zhenyun Shi Ziyu Liu 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第4期323-332,共10页
To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trialand-error analyses to investigate suitable product’s material,structure,mechanical properites etc.The whole process from ... To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trialand-error analyses to investigate suitable product’s material,structure,mechanical properites etc.The whole process from in vivo tests to clinical trials is expensive and time-consuming.Computational model is seen as a useful analysis tool to make the product development.A series of models for simulating tissue engineering process from cell attachment to tissue regeneration are reviewed.The challenging is that models for simulating tissue engineering processes are developed separately.From cell to tissue regeneration,it would go through blood injection after moving out the defect;to cell disperse and attach on the scaffold;to proliferation,migration and differentiation;and to the final part-becoming mature tissues.This paper reviewed models that related to tissue engineering process,aiming to provide an opportunity for researchers to develop a mature model for whole tissue engineering process.This article focuses on the model analysis methods of cell adhesion,nutrient transport and cell proliferation,differentiation and migration in tissue engineering.In cell adhesion model,one of the most accurate method is to use discrete phase model to govern cell movement and use Stanton-Rutland model for simulating cell attachment.As for nutrient transport model,numerical model coupling with volume of fluid model and species transport model together is suitable for predicting nutrient transport process.For cell proliferation,differentiation and migration,finite element method with random-walk algorithm is one the most advanced way to simulate these processes.Most of the model analysis methods require further experiments to verify the accuracy and effectiveness.Due to the lack of technology to detect the rate of nutrient diffusion,there are especially few researches on model analysis methods in the area of blood coagulation.Therefore,there is still a lot of work to be done in the research of the whole process model method of tissue engineering.In the future,the numerical model would be seen as an optimal way to investigate tissue engineering products bioperformance and also enable to optimize the parameters and material types of the tissue engineering products. 展开更多
关键词 tissue engineering SCAFFOLD computer aided design computational fluid dynamics finite element models
下载PDF
Compression of finite element hybrid mesh
10
作者 曾建江 陈文亮 翟建军 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期165-169,共5页
A method for encoding and compressing finite element models is proposed. Themodel may be various non-simple topological structures and contain any combinations of beams,triangular elements and quadrilateral elements. ... A method for encoding and compressing finite element models is proposed. Themodel may be various non-simple topological structures and contain any combinations of beams,triangular elements and quadrilateral elements. First the model is subdivided into simple meshesthat are orientable and manifold. Based on the Edgebreaker algorithm, 13 labelled pairs areintroduced for quadrilateral meshes and five other labelled pairs are introduced for triangles. Thenthe connectivity information of mixed triangle/quadrilateral meshes is coded in a direct manner.Two other bits are used to record the wireframe information. For the pure wireframe model, Taubin'smethod is extended to compress it. The compression algorithm is implemented and evaluated.Experiments with several models show that the method achieves excellent compression ratios. 展开更多
关键词 finite element model MESH compression
下载PDF
Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment 被引量:5
11
作者 赵娜 杨延清 +3 位作者 韩明 罗贤 冯广海 张荣军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2226-2232,共7页
Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS fin... Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable. 展开更多
关键词 aluminum alloy heat-induced pressure finite element modeling temperature field stress field material properties
下载PDF
Discrete element modeling of migration and evolution rules of coarse aggregates in the static compaction process 被引量:4
12
作者 刘卫东 高英 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期85-92,共8页
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract... To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone. 展开更多
关键词 asphalt mixture coarse aggregate static compaction discrete element model
下载PDF
Evaluating the mechanical properties of anisotropic shale containing bedding and natural fractures with discrete element modeling 被引量:9
13
作者 Yingjie Li Lihong Song +2 位作者 Yuanjun Tang Jianping Zuo Dongjie Xue 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期91-106,共16页
Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research... Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale. 展开更多
关键词 SHALE Discrete fracture network Natural fracture ANISOTROPY Discrete element modeling
下载PDF
Prediction of Cross-Tension Strength of Self-Piercing Riveted Joints Using Finite Element Simulation and XGBoost Algorithm 被引量:8
14
作者 Jianping Lin Chengwei Qi +4 位作者 Hailang Wan Junying Min Jiajie Chen Kai Zhang Li Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期168-178,共11页
Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension stren... Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values. 展开更多
关键词 Self-piercing riveting Joint strength Cross-tension Finite element modeling Machine learning
下载PDF
Finite element modeling of pore-fluid flow in the Dachang ore district,Guangxi,China:Implications for hydrothermal mineralization 被引量:8
15
作者 Minghui Ju Chongbin Zhao +1 位作者 Tagen Dai Jianwen Yang 《Geoscience Frontiers》 SCIE CAS 2011年第3期463-474,共12页
Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to un... Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district. 展开更多
关键词 Finite element modeling Dachang ore district Hydrothermalmineralization Salinity-induced buoyancy
下载PDF
Application of 1D/3D finite elements coupling for structural nonlinear analysis 被引量:12
16
作者 岳健广 A.Fafitis +1 位作者 钱江 雷拓 《Journal of Central South University》 SCIE EI CAS 2011年第3期889-897,共9页
An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ... An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently. 展开更多
关键词 elements coupling model global behavior local damage multi-point constraint equations nonlinear analysis
下载PDF
A modified discrete element model for sea ice dynamics 被引量:6
17
作者 LI Baohui LI Hai +2 位作者 LIU Yu WANG Anliang JI Shunying 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期56-63,共8页
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft... Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work. 展开更多
关键词 sea ice dynamics modified discrete element model contact force model numerical simulation
下载PDF
Time effect and prediction of broken rock bulking coefficient on the base of particle discrete element method 被引量:5
18
作者 Fanfei Meng Hai Pu +4 位作者 Takashi Sasaoka Hideki Shimada Sifei Liu Tumelo KM Dintwe Ziheng Sha 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期643-651,共9页
Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was ad... Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure. 展开更多
关键词 Bulking coefficient Time effect Deformation prediction Broken rock Particle discrete element model
下载PDF
Finite element modeling assumptions impact on seismic response demands of MRF-buildings 被引量:4
19
作者 Shehata E Abdel Raheem Ahmed K Abdel Zaher Ahmed MA Taha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期821-834,共14页
Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the compu... Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element(FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model. 展开更多
关键词 RC-MRF buildings design codes provisions seismic design finite element modeling modeling assumptions response demands
下载PDF
Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction 被引量:4
20
作者 Libardo V.Vanegas-Useche Magd M.Abdel-Wahab Graham A.Parker 《Computers, Materials & Continua》 SCIE EI 2018年第7期169-184,共16页
In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITS... In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant. 展开更多
关键词 BRUSH street sweeping finite element modeling contact mechanics
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部