期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
THE GENERATION OF NON-LINEAR STIFFNESS MATRIX OF TRIANGLE ELEMENT WHENCONSIDERING BOTH THE BENDING AND IN-PLANEME MBRANE FORCES
1
作者 张建海 李永年 陈大鹏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第5期425-434,共10页
Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forc... Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forces. A computer programme for the calculation of large deflection and inner forces of shallow shells is designed on theseformulas. The central deflection curve computed by this programme is compared with other pertaining results. 展开更多
关键词 triangular element non-linear stiffness matrix
下载PDF
THE DYNAMIC STIFFNESS MATRIX OF THE FINITE ANNULAR PLATE ELEMENT
2
作者 张益松 高德平 吴晓萍 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第12期1151-1162,共12页
The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then... The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then the dynamic stiffness matrix of the finite annular plate element is established in closed form and checked by the direct stiffness method. The paper has given wide convcrage for decomposing the dynamic matrix into the power series of frequency square. By utilizing the axial symmetry of annular elements, the modes with different numbers of nodal diameters at s separately treated. Thus some terse and complete results are obtained as the foundation of structural characteristic analysis and dynamic response compulation. 展开更多
关键词 DE THE DYNAMIC stiffness MATRIX OF THE FINITE ANNULAR PLATE element PING
下载PDF
Stiffness Matrix Derivation of Space Beam Element at Elevated Temperature
3
作者 杨秀英 赵金城 龚景海 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第4期492-497,共6页
<Abstract>Element stiffness equation is very important in structural analysis,and directly influences the accuracy of the results.At present,derivation method of element stiffness equation is relatively mature u... <Abstract>Element stiffness equation is very important in structural analysis,and directly influences the accuracy of the results.At present,derivation method of element stiffness equation is relatively mature under ambient temperature,and the elastic phrase of material stress-strain curve is generally adopted as physical equation in derivation.However,the material stress-strain relationship is very complicated at elevated temperature,and its form is not unique,which brings great diffculty to the derivation of element stiffness equation.Referring to the derivation method of element stiffness equation at ambient temperature,by using the continuous function of stress-strain-temperature at elevated temperature,and based on the principle of virtual work,the stiffness equation of space beam element and the formulas of stiffness matrix are derived in this paper,which provide basis for finite element analysis on structures at elevated temperature. 展开更多
关键词 elevated temperature space beam element element stiffness matrix principle of virtual work
原文传递
Application of Viscoelastic Material in Structures Control
4
作者 魏文辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期91-93,共3页
The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combine... The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combined element stiffness matrix of damper-brace system is deduced.At last,the theoretical deduction is verified by comparing the theoretical results with experimental ones. 展开更多
关键词 ENERGY-DISSIPATION viscoelastic materials element stiffness matrix
下载PDF
Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils 被引量:7
5
作者 Xiaoqiang Gu Lutong Lu Jiangu Qian 《Particuology》 SCIE EI CAS CSCD 2017年第3期21-29,共9页
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shea... Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson's ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson's ratio depend uniquely on the soil's coordination number. 展开更多
关键词 Discrete element method Particle size distribution Small strain stiffness Poisson's ratio Coordination number
原文传递
LOADS INFLUENCE ANALYSIS ON NOVEL HIGH PRECISION FLEXURE PARALLEL POSITIONER 被引量:1
6
作者 SUN Lining DONG Wei DU Zhijiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期37-40,共4页
A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventiona... A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system. 展开更多
关键词 Flexure hinge Parallel positioner stiffness analysis Finite element analysis (FEA)
下载PDF
Investigation into improving the efficiency and accuracy of CFD/DEM simulations 被引量:6
7
作者 Falah Alobaid Nabil Baraki Bernd Epple 《Particuology》 SCIE EI CAS CSCD 2014年第5期41-53,共13页
The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and acc... The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and accuracy of this model are investigated. Parameter studies are performed; in these studies, the stiffness coefficient, the fluid time step and the processor number are varied under conditions with different numbers of particles and different particle diameters. The obtained results are compared with measurements to derive the optimum parameters for CFD/DEM simulations. The results suggest that the application of higher stiffness coefficients slightly improves the simulation accuracy. However, the average computing time increases exponentially. At larger fluid time steps, the results show that the average computation time is independent of the applied fluid time step whereas the simulation accuracy decreases greatly with increasing the fluid time step. The use of smaller time steps leads to negligible improvements in the simulation accuracy but results in an exponential rise in the average computing time. The parallelization accelerates the DEM simulations if the critical number for the domain decomposition is not reached. Above this number, the performance is no longer proportional to the number of processors. The critical number for the domain decomposition depends on the number of particles. An increase in solid contents results in a shift of the critical decomposition number to higher numbers of CPUs. 展开更多
关键词 Computational fluid dynamics Discrete element method stiffness coefficient Fluid time step Parallelization
原文传递
Stifness modeling and analysis of a novel 4-DOF PKM for manufacturing large components 被引量:3
8
作者 Li Yonggang Zhang Erjiang +1 位作者 Song Yimin Feng Zhiyou 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1577-1585,共9页
Faster response to orientation varying is one of the outstanding abilities of a parallel kinematic machine(PKM).It enables such a system to act as a reconfgurable module employed to machine large components effcient... Faster response to orientation varying is one of the outstanding abilities of a parallel kinematic machine(PKM).It enables such a system to act as a reconfgurable module employed to machine large components effciently.The stiffness formulation and analysis are the beforehand key tasks for its parameters design.A novel PKM with four degrees of freedom(DOFs)is proposed in this paper.The topology behind it is 2PUS-2PRS parallel mechanism.Its semianalytical stiffness model is frstly obtained,where the generalized Jacobian matrix of 2PUS-2PRS is formulated with the help of the screw theory and the stiffness coeffcients of complicated components are estimated by integrating fnite element analysis and numerical ftting.Under the help of the model,it is predicted that the property of system stiffness distributes within the given workspace,which features symmetry about a certain plane and is also verifed by performing fnite element analysis of the virtual prototype.Furthermore,key parameters affecting the system stiffness are identifed through sensitivity analysis.These provide insights for further optimization design of this PKM. 展开更多
关键词 Manufacturing Parallel kinematic machine stiffness Semi-analytical method Finite element analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部