The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p...The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.展开更多
In this paper a mixed finite element-characteristic mixed finite element method is discussed to simulate an incompressible miscible Darcy-Forchheimer problem.The flow equation is solved by a mixed finite element and t...In this paper a mixed finite element-characteristic mixed finite element method is discussed to simulate an incompressible miscible Darcy-Forchheimer problem.The flow equation is solved by a mixed finite element and the approximation accuracy of Darch-Forchheimer velocity is improved one order.The concentration equation is solved by the method of mixed finite element,where the convection is discretized along the characteristic direction and the diffusion is discretized by the zero-order mixed finite element method.The characteristics can confirm strong stability at sharp fronts and avoids numerical dispersion and nonphysical oscillation.In actual computations the characteristics adopts a large time step without any loss of accuracy.The scalar unknowns and its adjoint vector function are obtained simultaneously and the law of mass conservation holds in every element by the zero-order mixed finite element discretization of diffusion flux.In order to derive the optimal 3/2-order error estimate in L^(2) norm,a post-processing technique is included in the approximation to the scalar unknowns.Numerical experiments are illustrated finally to validate theoretical analysis and efficiency.This method can be used to solve such an important problem.展开更多
基金Supported by the National Natural Science Foundation of China(11101124 and 11271231)Natural Science Foundation of Shandong Province(ZR2016AM08)National Tackling Key Problems Program(2011ZX05052,2011ZX05011-004)
文摘The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.
基金supported by the Natural ScienceFoundation of Shandong Province(ZR2021MA019)。
文摘In this paper a mixed finite element-characteristic mixed finite element method is discussed to simulate an incompressible miscible Darcy-Forchheimer problem.The flow equation is solved by a mixed finite element and the approximation accuracy of Darch-Forchheimer velocity is improved one order.The concentration equation is solved by the method of mixed finite element,where the convection is discretized along the characteristic direction and the diffusion is discretized by the zero-order mixed finite element method.The characteristics can confirm strong stability at sharp fronts and avoids numerical dispersion and nonphysical oscillation.In actual computations the characteristics adopts a large time step without any loss of accuracy.The scalar unknowns and its adjoint vector function are obtained simultaneously and the law of mass conservation holds in every element by the zero-order mixed finite element discretization of diffusion flux.In order to derive the optimal 3/2-order error estimate in L^(2) norm,a post-processing technique is included in the approximation to the scalar unknowns.Numerical experiments are illustrated finally to validate theoretical analysis and efficiency.This method can be used to solve such an important problem.