A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fractu...A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase.展开更多
对无单元伽辽金法的并行计算进行了详细研究,并将其应用于弹性动力学问题。使用并行桶搜索算法进行节点搜索,使用并行几何搜索算法进行样点搜索,讨论了移动最小二乘MLS(Moving Least Squares)形函数及其导数的并行计算和方程组的并行求...对无单元伽辽金法的并行计算进行了详细研究,并将其应用于弹性动力学问题。使用并行桶搜索算法进行节点搜索,使用并行几何搜索算法进行样点搜索,讨论了移动最小二乘MLS(Moving Least Squares)形函数及其导数的并行计算和方程组的并行求解,并利用多层图形划分实现负载平衡。最后给出了并行无单元伽辽金法应用于弹性动力学的计算流程和实例。计算结果表明无单元伽辽金法具有很高的并行性和很好的并行效率,对其进行并行计算具有非常重要的意义。展开更多
基金Supported by the National Natural Science Foundation of China(51827804)CNPC Strategic Cooperation Science and Technology Major Project(ZLZX2020-01-05)Open Fund of State Key Laboratory of Rock Mechanics and Engineering(SKLGME021024).
文摘A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase.
基金This work is supported by the National Natural Science Foundation of China(52275009,52037002,52207038)the National Double First-classConstruction Special Funds(4316002181)the Fundamental Research Funds for the Central Universities(3216002101A2,3216002209A1).
文摘对无单元伽辽金法的并行计算进行了详细研究,并将其应用于弹性动力学问题。使用并行桶搜索算法进行节点搜索,使用并行几何搜索算法进行样点搜索,讨论了移动最小二乘MLS(Moving Least Squares)形函数及其导数的并行计算和方程组的并行求解,并利用多层图形划分实现负载平衡。最后给出了并行无单元伽辽金法应用于弹性动力学的计算流程和实例。计算结果表明无单元伽辽金法具有很高的并行性和很好的并行效率,对其进行并行计算具有非常重要的意义。