Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ...Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater.展开更多
The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controver...The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.展开更多
Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, Chi...Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.展开更多
Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light r...Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. 87Sr/86Sr and 143Nd/144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREE-enriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.展开更多
The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has bee...The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.展开更多
Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history...Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma'anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (〈45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.展开更多
The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small u...The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.展开更多
Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn a...Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn and Ba, enriches Li,U,Th,Sc,Co,Cu,Pb,Zn,Cr,Rb,Y,Sb and light rare earth elements,slightly enriches V,Ga,Zr,Nb,Cd and middle rare earth elements,is short of Mo,In,Sn,Cs,Hf,Ta,W,Ti,Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements.The REE (rare earth elements)partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean.The Sr,Nd isotopic ratios of the Okinawa Trough foraminifera are 0 709 769 and 0 512 162,respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water,but much lower than those of river water;the latter is slightly lower than those of oceanic water,but higher than those of river water,demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.展开更多
The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the lat...The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series. Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O. As for the Bancun dyke, Al2O3=16.32%–17.54% and K2O/Na2O=0.65–0.77; as for the Bali dyke, Al2O3=16.89%–17.81% and K2O/Na2O=0.93–0.99. Both the Bancun and Bali mafic dykes are relatively enriched in LILE and LREE, but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc, with high initial Sr isotopic ratios and low εNd (t) values. The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556–0.70903 and their εNd (t) values vary between -6.8 and -6.3; those of the Bali hornblende dyke are within the range of 0.710726–0.710746 and their εNd (t) values are -4.7– -4.9, showing the characteristics of enriched mantle EM II. The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination, and metasomatism caused by subduction fluids is the main factor leading to LILE and LREE enrichments. The enriched mantle is the source region for the mafic dykes, and mixing of subduction fluid metasomatized enriched mantle and EM II-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes. Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas. In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics, it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc, revealing the tectonic environment of formation of the mafic dykes, the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced. Meanwhile, it is also indicated that the tensional tectonic stress mechanism is responsible for the formation of the mafic dykes in western Fujian Province.展开更多
The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite. Sr...The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite. Sr-Nd-Pb isotopes of the intrusions show that the porphyritic syenogranite has initial ^87Sr/^86Sr ratios of 0.70418-0.70952, ENd(t) values of 1.3 to 2.1 (t=143 Ma), ^206Pb/^204Pb ratios of 19.191-19.573, ^207Tpb/^204pb ratios of 15.551-15.572, and ^208Pb/^204Pb ratios of 38.826-39.143. The monzogranite has initial 87Sr/86Sr ratios of 0.70293-0.71305, εNd(t) values of 1.1 to 2.0 (t=-147 Ma), ^206Pb/^204pb ratios of 19.507-20.075, ^207Pb/^204Pb ratios of 15.564-15.596, and ^208Pb/^204Pb ratios of 39.012-39.599. The calculated Nd model ages (TDM) for monzogranite and porphyritic syenogranite range from 866 to 1121 Ma and 795 to 1020 Ma, respectively. The granitic rocks in the Hashitu area have the same isotope range as granites in the southern parts of the Great Hinggan Range. The isotope composition indicates that these granites are derived from the partial melting of a juvenile lower crust originating from a depleted mantle with minor contamination by ancient continental crust. The integrating our results with published data and the Late Mesozoic regional tectonic setting of the region suggest that the granites in the Hashitu area formed in an intra-continent extensional setting, and they are related to the thinning of the thickened lithosphere and upwelling of the asthenosphere.展开更多
Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165...Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165.0±1.9 Ma, and the Lisong unit is 163.0±1.3 Ma in age. Much similarity in ages of the three units has thus proved that the whole Guposhan granite complex was formed in the same period of time. They were the products of large-scale granitic magmatism through crust-remelting in the first stage of the Middle Yanshanian in South China. However, the three units have differences both in petrology and in geochemistry. Besides the differences in major, trace and rare-earth elements, they are distinct in their Rb-Sr and Sm-Nd isotopic compositions. The East Guposhan unit and Lisong unit and its enclaves have a similar (87Sr/86Sr)i value of 0.7064 with an average of εNd(t)=-3.03, indicating that more mantle material was evolved in the magma derivation; whereas the West Guposhan unit has a higher (87Sr/86Sr)i value of 0.7173 but a lower εNd(t) value of -5.00, and is characterized by strong negative Eu anomalies and higher Rb/Sr ratios, suggesting that its source materials were composed of relatively old crust components and new mantle-derived components. In addition, an inherited zircon grain in the East Guposhan unit (GP-1) yielded a 206Pb/238U age of 806.4 Ma, which is similar to the ages of the Jiulin cordierite granite in northern Jiangxi and of the Yinqiao migmatic granite in Guangxi in the HZH granite zone. All this may provide new evidence for Late Proterozoic magmatism in the HZH granite zone.展开更多
Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high S...Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2 (73.19-77.68 wt%) and Na20+K20 (6.53-8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206pb/23SU ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate (STSr/S6Sr)i values of 0.704912 to 0.705896, slightly negative eNd(t) values of -1.4 to -0.1, and positive Cur(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.展开更多
基金The National Science and Technology Major Project under contract No.2011ZX05025-002-03the Project of China National Offshore Oil Corporation(CNOOC)Limited under contract No.CCL2013ZJFNO729the National Natural Science Foundation of China under contract No.41530963.
文摘Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2901903)the Geological Comprehensive Research Project of China’s Metallurgical Geology Bureau(Grant No.[2022]CMGBDZYJ005),the National Natural Science Foundation of China(Grant No.42002097)the Geological Investigation Project(Grant Nos.DD20230031,DD20221690,DD20230049,DD20230337).
文摘The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.
文摘Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.
基金This study was supported by the National Natural Science Foundation of China under the contract No.40276024 and 49873015.
文摘Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. 87Sr/86Sr and 143Nd/144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREE-enriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.
基金funded by the Open Foundation of the Beijing SHRIMP Center (DDC15-016)the Applied Basic Research Program Youth Project of Yunnan Province (2016DF031)the National Basic Research Program of China (2015CB452605)
文摘The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.
基金supported by the Chinese Ministry of Science and Technology(Sinoprobe-05-03)Doctoral Fund of Ministry of Education of China(20110022120003)+1 种基金the Fundamental Research Funds for the Central UniversitiesOpen Fund of State Key Laboratory of Geological Processes and Mineral Resources(GPMR2011)
文摘Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma'anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (〈45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.
基金financially supported by the National Natural Science Foundation of China(No.41272093)China geological survey project(No.12120114080901)
文摘The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.
文摘Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn and Ba, enriches Li,U,Th,Sc,Co,Cu,Pb,Zn,Cr,Rb,Y,Sb and light rare earth elements,slightly enriches V,Ga,Zr,Nb,Cd and middle rare earth elements,is short of Mo,In,Sn,Cs,Hf,Ta,W,Ti,Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements.The REE (rare earth elements)partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean.The Sr,Nd isotopic ratios of the Okinawa Trough foraminifera are 0 709 769 and 0 512 162,respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water,but much lower than those of river water;the latter is slightly lower than those of oceanic water,but higher than those of river water,demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.
文摘The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series. Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O. As for the Bancun dyke, Al2O3=16.32%–17.54% and K2O/Na2O=0.65–0.77; as for the Bali dyke, Al2O3=16.89%–17.81% and K2O/Na2O=0.93–0.99. Both the Bancun and Bali mafic dykes are relatively enriched in LILE and LREE, but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc, with high initial Sr isotopic ratios and low εNd (t) values. The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556–0.70903 and their εNd (t) values vary between -6.8 and -6.3; those of the Bali hornblende dyke are within the range of 0.710726–0.710746 and their εNd (t) values are -4.7– -4.9, showing the characteristics of enriched mantle EM II. The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination, and metasomatism caused by subduction fluids is the main factor leading to LILE and LREE enrichments. The enriched mantle is the source region for the mafic dykes, and mixing of subduction fluid metasomatized enriched mantle and EM II-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes. Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas. In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics, it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc, revealing the tectonic environment of formation of the mafic dykes, the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced. Meanwhile, it is also indicated that the tensional tectonic stress mechanism is responsible for the formation of the mafic dykes in western Fujian Province.
基金part of the ongoing project "Superimposed tectonic activities and large-scale oreforming processes of the Hinggan-Mongolia Orogenic Belt"financially supported by the State Basic Research Program of China(2013CB429805)
文摘The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite. Sr-Nd-Pb isotopes of the intrusions show that the porphyritic syenogranite has initial ^87Sr/^86Sr ratios of 0.70418-0.70952, ENd(t) values of 1.3 to 2.1 (t=143 Ma), ^206Pb/^204Pb ratios of 19.191-19.573, ^207Tpb/^204pb ratios of 15.551-15.572, and ^208Pb/^204Pb ratios of 38.826-39.143. The monzogranite has initial 87Sr/86Sr ratios of 0.70293-0.71305, εNd(t) values of 1.1 to 2.0 (t=-147 Ma), ^206Pb/^204pb ratios of 19.507-20.075, ^207Pb/^204Pb ratios of 15.564-15.596, and ^208Pb/^204Pb ratios of 39.012-39.599. The calculated Nd model ages (TDM) for monzogranite and porphyritic syenogranite range from 866 to 1121 Ma and 795 to 1020 Ma, respectively. The granitic rocks in the Hashitu area have the same isotope range as granites in the southern parts of the Great Hinggan Range. The isotope composition indicates that these granites are derived from the partial melting of a juvenile lower crust originating from a depleted mantle with minor contamination by ancient continental crust. The integrating our results with published data and the Late Mesozoic regional tectonic setting of the region suggest that the granites in the Hashitu area formed in an intra-continent extensional setting, and they are related to the thinning of the thickened lithosphere and upwelling of the asthenosphere.
基金Granted jointly by the State Key Fundamental Research Project (Grant No. 1999CB403209) the National Natural Science Foundation of China (Grant No. 40132010).
文摘Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165.0±1.9 Ma, and the Lisong unit is 163.0±1.3 Ma in age. Much similarity in ages of the three units has thus proved that the whole Guposhan granite complex was formed in the same period of time. They were the products of large-scale granitic magmatism through crust-remelting in the first stage of the Middle Yanshanian in South China. However, the three units have differences both in petrology and in geochemistry. Besides the differences in major, trace and rare-earth elements, they are distinct in their Rb-Sr and Sm-Nd isotopic compositions. The East Guposhan unit and Lisong unit and its enclaves have a similar (87Sr/86Sr)i value of 0.7064 with an average of εNd(t)=-3.03, indicating that more mantle material was evolved in the magma derivation; whereas the West Guposhan unit has a higher (87Sr/86Sr)i value of 0.7173 but a lower εNd(t) value of -5.00, and is characterized by strong negative Eu anomalies and higher Rb/Sr ratios, suggesting that its source materials were composed of relatively old crust components and new mantle-derived components. In addition, an inherited zircon grain in the East Guposhan unit (GP-1) yielded a 206Pb/238U age of 806.4 Ma, which is similar to the ages of the Jiulin cordierite granite in northern Jiangxi and of the Yinqiao migmatic granite in Guangxi in the HZH granite zone. All this may provide new evidence for Late Proterozoic magmatism in the HZH granite zone.
基金supported by the resource compensation of Heilongjiang Province(Grant Nos.SDK2010-25)the Special Scientific Research Fund of Public Welfare Profession of China(Grant Nos.201211008)
文摘Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2 (73.19-77.68 wt%) and Na20+K20 (6.53-8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206pb/23SU ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate (STSr/S6Sr)i values of 0.704912 to 0.705896, slightly negative eNd(t) values of -1.4 to -0.1, and positive Cur(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.