An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Cala...An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.展开更多
The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil resp...The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.展开更多
Pinus Syvestfiformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11 -year old ) was studied on response to elevated Co...Pinus Syvestfiformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11 -year old ) was studied on response to elevated Co, concentration at 500±μLL' L-1 by directly injecting CO2 into the canopy under natural condition in 1998-1999. The results showed that the elevated Co, concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated Co, reduced the transpiration and enhances the water use efficiency (WUE) of plant.展开更多
To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chloro...To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSII (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (qP) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, qP and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.展开更多
Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmen...Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.展开更多
Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadlea...Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.展开更多
Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and &...Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 mol mol-1 at both 16 and 20℃ air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 and 20℃,, and was consistently higher at 16℃ than at 20℃. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations . The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.展开更多
Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at ...Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.展开更多
Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in...Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL-L-1 and 700 μL-L-1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs of Pin us koreaipsis and Pinus syvestriformis seedfings increased with the rising of CO2 concentration, while that of Phellodron amurense and haus mandshurica increased at some time and decreased at another time.展开更多
Horizontal and vertical variations of daily average CO 2 concentration above the wetland surface were studied in Xianghai National Nature Reserve of China in August, 2000 The primary purpose was to study spatial distr...Horizontal and vertical variations of daily average CO 2 concentration above the wetland surface were studied in Xianghai National Nature Reserve of China in August, 2000 The primary purpose was to study spatial distribution characteristics of CO 2 concentration on the four levels of height(0 1 m, 0 6 m, 1 2 m and 2 m) and compare the differences of CO 2 concentration under different land covers. Results showed that daily average CO 2 concentration above wetland surface in Xianghai National Natural Reserve was lower than that above other wetlands in northeast China as well as the worldwide average, suggesting that Xianghai wetland absorbed CO 2 in August and acted as “sink” of CO 2 The horizontal variations on the four levels of height along the latitude were distinct, and had the changing tendency of “decreasing after increasing” with the increase of height. The areas with obvious variations were consistent on different levels of height, and those with the highest variations appeared above surface of shore, sloping field, Typha wetland and Phragmites wetland; the vertical variations were greatly different, with the higher variations in Phragmites wetland and Typha wetland, and the lands near the shore and the sloping field with the lower variations. Spatial variations of daily average CO 2 concentrations above wetland surface were affected by surface qualities and land covers.展开更多
There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Cares lasiocarpa Ehrh. and C. ps...There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Cares lasiocarpa Ehrh. and C. pseudoucuaica F. Schm) canopy at heights 0. 5, 1. 0 and 1. 5 m.CO2 concentration was measured sequentially every 3 bars by using an infrared gas analyzer. Soil and air temperature, wind speed, net radiation and soil heat flux were also measured simultaneously. Extremely drily minimum and maximum CO2 concentration rangal from 250 to 754 μmd/mol for the 4-year work. The typical minimum and maximum values ranged from 314 to 464 μmol/mol at the height of marsh plant (about 0. 5 m) during the fruiting perioed and mature date. The seasonal changes in CO2 concentration show that the minimum CO2 concentration occurred in the fruiting period and mature date, and both of their minimum values were 314 μmol/mol. This illustrates that CO2 consumed by photosynthesis was stable during the period. The flux of CO2 can be thought as a turbulent diffusion phenomenon. By micrometeorological methods, the diurnal CO2 fluxes were measured in the flowering peried, fruiting period, early mature date, late mature date and yellow-ripe stage. Their values were -0. 18, 38. 15,24. 13, 10. 9 and 4. 91 μmol/mol respectively.展开更多
Objective To investigate effects of different high CO_2 concentrations on the development of 2-cell mouse embryos in vitro Methods At levels of 5% CO_2 (control group), 5.7% CO_2, 6.0% CO_2 and 15% CO_2, embryos w...Objective To investigate effects of different high CO_2 concentrations on the development of 2-cell mouse embryos in vitro Methods At levels of 5% CO_2 (control group), 5.7% CO_2, 6.0% CO_2 and 15% CO_2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO_2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted. Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P<0.01). At the level of 5.7% CO_2, the developmental rate of blastocysts was 4.3%, and those of other experimental groups were 0. At the levels of 5.7% and 6.0% CO_2, embryos were blocked in the 2-cell or the 4-cell stage, and no significant difference was showed between the two groups (P>0.05). At the level of 15% CO_2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO_2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO_2 concentration.展开更多
This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospher...This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospheric carbon dioxide(CO_(2))concentration.The multi-model ensemble mean(MME)can reasonably simulate the increasing trend of CO_(2) concentration from 1850 to 2014,compared with the observation data from the Scripps CO_(2) Program and CMIP6 prescribed data,and improves upon the CMIP5 MME CO_(2) concentration(which is overestimated after 1950).The growth rate of CO_(2) concentration in the northern hemisphere(NH)is higher than that in the southern hemisphere(SH),with the highest growth rate in the mid-latitudes of the NH.The MME can also reasonably simulate the seasonal amplitude of CO_(2) concentration,which is larger in the NH than in the SH and grows in amplitude after the 1950s(especially in the NH).Although the results of the MME are reasonable,there is a large spread among ESMs,and the difference between the ESMs increases with time.The MME results show that regions with relatively large CO_(2) concentrations(such as northern Russia,eastern China,Southeast Asia,the eastern United States,northern South America,and southern Africa)have greater seasonal variability and also exhibit a larger inter-model spread.Compared with CMIP5,the CMIP6 MME simulates an average spatial distribution of CO_(2) concentration that is much closer to the site observations,but the CMIP6-inter-model spread is larger.The inter-model differences of the annual means and seasonal cycles of atmospheric CO_(2) concentration are both attributed to the differences in natural sources and sinks of CO_(2) between the simulations.展开更多
基金supported by the Chinese Academy of Sciences (No KZCX2-YW-309)the National Basic Research Program (973) of China (No 2004CB418507)
文摘An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-416)National NaturM Science Foundation of China (No.90411020)
文摘The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.
文摘Pinus Syvestfiformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11 -year old ) was studied on response to elevated Co, concentration at 500±μLL' L-1 by directly injecting CO2 into the canopy under natural condition in 1998-1999. The results showed that the elevated Co, concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated Co, reduced the transpiration and enhances the water use efficiency (WUE) of plant.
基金Supported by the National Key Project of Scientific and Technical Supporting Programs from Ministry of Science & Technology of China (2006BAD28B07-5)the Hi-Tech Research and Development (863) Program of China(2001AA247012)the Innovation in Graduate Education Plan of Northwest A&F University (05YCH013).
文摘To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSII (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (qP) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, qP and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.
文摘Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.
基金The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX-406-4 KZCX1SW01 of the Chinese Academy of Sciences
文摘Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.
文摘Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 mol mol-1 at both 16 and 20℃ air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 and 20℃,, and was consistently higher at 16℃ than at 20℃. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations . The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.
文摘Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.
文摘Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL-L-1 and 700 μL-L-1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs of Pin us koreaipsis and Pinus syvestriformis seedfings increased with the rising of CO2 concentration, while that of Phellodron amurense and haus mandshurica increased at some time and decreased at another time.
文摘Horizontal and vertical variations of daily average CO 2 concentration above the wetland surface were studied in Xianghai National Nature Reserve of China in August, 2000 The primary purpose was to study spatial distribution characteristics of CO 2 concentration on the four levels of height(0 1 m, 0 6 m, 1 2 m and 2 m) and compare the differences of CO 2 concentration under different land covers. Results showed that daily average CO 2 concentration above wetland surface in Xianghai National Natural Reserve was lower than that above other wetlands in northeast China as well as the worldwide average, suggesting that Xianghai wetland absorbed CO 2 in August and acted as “sink” of CO 2 The horizontal variations on the four levels of height along the latitude were distinct, and had the changing tendency of “decreasing after increasing” with the increase of height. The areas with obvious variations were consistent on different levels of height, and those with the highest variations appeared above surface of shore, sloping field, Typha wetland and Phragmites wetland; the vertical variations were greatly different, with the higher variations in Phragmites wetland and Typha wetland, and the lands near the shore and the sloping field with the lower variations. Spatial variations of daily average CO 2 concentrations above wetland surface were affected by surface qualities and land covers.
文摘There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Cares lasiocarpa Ehrh. and C. pseudoucuaica F. Schm) canopy at heights 0. 5, 1. 0 and 1. 5 m.CO2 concentration was measured sequentially every 3 bars by using an infrared gas analyzer. Soil and air temperature, wind speed, net radiation and soil heat flux were also measured simultaneously. Extremely drily minimum and maximum CO2 concentration rangal from 250 to 754 μmd/mol for the 4-year work. The typical minimum and maximum values ranged from 314 to 464 μmol/mol at the height of marsh plant (about 0. 5 m) during the fruiting perioed and mature date. The seasonal changes in CO2 concentration show that the minimum CO2 concentration occurred in the fruiting period and mature date, and both of their minimum values were 314 μmol/mol. This illustrates that CO2 consumed by photosynthesis was stable during the period. The flux of CO2 can be thought as a turbulent diffusion phenomenon. By micrometeorological methods, the diurnal CO2 fluxes were measured in the flowering peried, fruiting period, early mature date, late mature date and yellow-ripe stage. Their values were -0. 18, 38. 15,24. 13, 10. 9 and 4. 91 μmol/mol respectively.
基金This work was supported by the Natural Science Foundation of Guangdong Province,China
文摘Objective To investigate effects of different high CO_2 concentrations on the development of 2-cell mouse embryos in vitro Methods At levels of 5% CO_2 (control group), 5.7% CO_2, 6.0% CO_2 and 15% CO_2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO_2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted. Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P<0.01). At the level of 5.7% CO_2, the developmental rate of blastocysts was 4.3%, and those of other experimental groups were 0. At the levels of 5.7% and 6.0% CO_2, embryos were blocked in the 2-cell or the 4-cell stage, and no significant difference was showed between the two groups (P>0.05). At the level of 15% CO_2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO_2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO_2 concentration.
基金supported by the National Natural Science Foundation of China(Grant No.42230608)the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
文摘This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospheric carbon dioxide(CO_(2))concentration.The multi-model ensemble mean(MME)can reasonably simulate the increasing trend of CO_(2) concentration from 1850 to 2014,compared with the observation data from the Scripps CO_(2) Program and CMIP6 prescribed data,and improves upon the CMIP5 MME CO_(2) concentration(which is overestimated after 1950).The growth rate of CO_(2) concentration in the northern hemisphere(NH)is higher than that in the southern hemisphere(SH),with the highest growth rate in the mid-latitudes of the NH.The MME can also reasonably simulate the seasonal amplitude of CO_(2) concentration,which is larger in the NH than in the SH and grows in amplitude after the 1950s(especially in the NH).Although the results of the MME are reasonable,there is a large spread among ESMs,and the difference between the ESMs increases with time.The MME results show that regions with relatively large CO_(2) concentrations(such as northern Russia,eastern China,Southeast Asia,the eastern United States,northern South America,and southern Africa)have greater seasonal variability and also exhibit a larger inter-model spread.Compared with CMIP5,the CMIP6 MME simulates an average spatial distribution of CO_(2) concentration that is much closer to the site observations,but the CMIP6-inter-model spread is larger.The inter-model differences of the annual means and seasonal cycles of atmospheric CO_(2) concentration are both attributed to the differences in natural sources and sinks of CO_(2) between the simulations.