期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Relationships between Soil Depth and Terrain Attributes in a Semi Arid Hilly Region in Western Iran 被引量:7
1
作者 Abdolmohammad MEHNATKESH Shamsollah AYOUBI +1 位作者 Ahmad JALALIAN Kanwar L.SAHRAWAT 《Journal of Mountain Science》 SCIE CSCD 2013年第1期163-172,共10页
Soil depth generally varies in mountainous regions in rather complex ways.Conventional soil survey methods for evaluating the soil depth in mountainous and hilly regions require a lot of time,effort and consequently r... Soil depth generally varies in mountainous regions in rather complex ways.Conventional soil survey methods for evaluating the soil depth in mountainous and hilly regions require a lot of time,effort and consequently relatively large budget to perform.This study was conducted to explore the relationships between soil depth and topographic attributes in a hilly region in western Iran.For this,one hundred sampling points were selected using randomly stratified methodology,and considering all geomorphic surfaces including summit,shoulder,backslope,footslope and toeslope;and soil depth was actually measured.Eleven primary and secondary topographic attributes were derived from the digital elevation model(DEM) at the study area.The result of multiple linear regression indicated that slope,wetness index,catchment area and sediment transport index,which were included in the model,could explain about 76 % of total variability in soil depth at the selected site.This proposed approach may be applicable to other hilly regions in the semi-arid areas at a larger scale. 展开更多
关键词 Soil depth prediction Topographic attributes Digital elevation model Soil-landscape model
下载PDF
Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes 被引量:3
2
作者 Mohsen BAGHERI BODAGHABADI José Antonio MARTINEZ-CASASNOVAS +4 位作者 Mohammad Hasan SALEHI Jahangard MOHAMMADI Isa ESFANDIARPOOR BORUJENI Norair TOOMANIAN Amir GANDOMKAR 《Pedosphere》 SCIE CAS CSCD 2015年第4期580-591,共12页
Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accur... Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accurately. In this study, multilayer perceptron artificial neural networks(ANNs) were developed to map soil units using digital elevation model(DEM) attributes. Several optimal ANNs were produced based on a number of input data and hidden units. The approach used test and validation areas to calculate the accuracy of interpolated and extrapolated data. The results showed that the system and level of soil classification employed had a direct effect on the accuracy of the results. At the lowest level, smaller errors were observed with the World Reference Base(WRB)classification criteria than the Soil Taxonomy(ST) system, but more soil classes could be predicted when using ST(7 soils in the case of ST vs. 5 with WRB). Training errors were below 11% for all the ANN models applied, while the test error(interpolation error) and validation error(extrapolation error) were as high as 50% and 70%, respectively. As expected, soil prediction using a higher level of classification presented a better overall level of accuracy. To obtain better predictions, in addition to DEM attributes, data related to landforms and/or lithology as soil-forming factors, should be used as ANN input data. 展开更多
关键词 digital elevation model attributes multilayer perceptron soil classification soil-forming factors soil survey
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部