Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic alg...Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.展开更多
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with...Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.展开更多
How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with in...How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with individual mobility in a sustainable and socially acceptable way?LiMo-2040 attempts to provide answers to these questions.It follows a holistic approach according to the criteria:As light,as compact and as simple(cost-effective)as possible.Modular e-vehicle concepts(consisting of vehicle cabin and chassis)are known,but have not yet been thought through to their logical conclusion.The LiMo cabin is not only a vehicle cabin,but also a component of a modern high-rise apartment.It therefore requires no parking space and combines urban living and individual mobility sustainably and cost-effectively.If a vehicle is needed,an app can be used to book a chassis that comes along autonomously and waits until the cabin,including its occupants,travels down a sophisticated rail system,docks and autonomously heads for the desired destination.展开更多
In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demol...In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demolishing them for new construction. However, a significant challenge arises from the lack of elevator designs in many of these existing RC buildings. Adding an external elevator becomes crucial to solving accessibility issues, enhancing property value, and satisfying modern residential buildings using convenient requirements. However, the structural performance of external elevator wells remains understudied. This research is designed by the actual external elevator project into existing RC buildings in Jinzhong Rd, Shanghai City. Specifically, this research examines five different external elevator wells under nonlinear pushover analysis, each varying in the height of the RC (Reinforced Concrete) footing. By analyzing plastic hinge states, performance points, capacity curves, spectrum curves, layer displacement, and drift ratio, this research aims to provide a comprehensive understanding of how these structures of the external elevator well respond to seismic events. The findings are expected to serve as a valuable reference for future external elevator projects, ensuring the external elevator designs meet the seismic requirements. By emphasizing seismic resistance in the design phase, the research aims to enhance the overall safety and longevity of external elevator systems integrated into existing RC buildings.展开更多
Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurol...Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurological symptoms that influence personality,decision-making ability,and language.展开更多
BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular ...BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications.展开更多
A new instrument for checking the quality of elevator guide rails is introduced.With this instrument,the general geometric errors such as straightness,flatness,squareness,twist,thickness and height can be measured aut...A new instrument for checking the quality of elevator guide rails is introduced.With this instrument,the general geometric errors such as straightness,flatness,squareness,twist,thickness and height can be measured automatically,simultaneously in a short time with high accuracy.It is very useful for elevator guide rail factories to improve their work efficiency and the quality of their products.展开更多
The aim of the study is to simulate actual operation of an elevator. First, it designed elevator scheduling algorithm for control ing operation of the elevator;second, it simulated elevator operation by the use of obj...The aim of the study is to simulate actual operation of an elevator. First, it designed elevator scheduling algorithm for control ing operation of the elevator;second, it simulated elevator operation by the use of object-oriented programming language, in which double buffering technology was used to solve the problem of elevator pictures flicker at refreshing; final y, test correctness and rationality of the system.展开更多
In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents...In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents a new control method to restrain the sway of both ropes. This study considers varying rope lengths during elevator operation which cause other system parameters such as natural frequency, and damping ratio to be time-variant variables. The dynamics of the ropes are analyzed by solving the governing non-stationary, nonlinear equation numerically. In order to mitigate the vibration of ropes in several motion conditions, particularly upwards movement, downward movement, stopped at the lowest position, and stopped at the highest position, an active equipment is installed at the compensation sheave. The stability of the system using the controller is analyzed at four states: without disturbance and static car, without disturbance and mobile car, including disturbance and static car, and including disturbance and mobile car. The efficiency of the controller used for dampening the vibration of elevator ropes is validated by numerical simulation results.展开更多
To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase spa...To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized.展开更多
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor rece...The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.展开更多
In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl...In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.展开更多
AIM: To describe the clinical features of congenital double elevator palsy(CDEP) and to evaluate various surgical outcomes between the standard Knapp and augmented Knapp procedures, based on improvements in primary...AIM: To describe the clinical features of congenital double elevator palsy(CDEP) and to evaluate various surgical outcomes between the standard Knapp and augmented Knapp procedures, based on improvements in primary eye position and ocular motility.METHODS: Twenty-two patients with CDEP at Shanghai Children's Hospital were enrolled from July 2014 to January 2018. The forced duction test(FDT) was negative in 21 patients, aged 8 mo to 12 y(mean 5.4 y). Patients were divided into two treatment groups: 16 patients underwent the standard Knapp procedure(group A), with or without horizontal squint procedure; and 5 patients underwent the augmented Knapp procedure(Foster procedure; group B). One patient underwent inferior rectus recession in the affected eye and superior rectus recession in the sound eye because of a positive FDT. The pre-and postoperative vertical deviations in the primary position and ocular motility were compared in the two groups.RESULTS: Twenty-one eyes of the 22 patients(95%) were aligned within 10 prism diopters(PD), and all patients(100%) reached ≥25% elevation improvement after surgery. The average corrected vertical deviation in group B was statistically better than that of group A. For group A, the vertical deviation in the primary position decreased from 24.75Δ±8.35Δ to 4.56Δ±8.07Δ after surgery, for an improvement of 23.06Δ±6.51Δ(P〈0.05). In group B, the decrease was from 35.00Δ±5.00Δ(range 30Δ-40Δ) to 1.00Δ±2.24Δ, for an improvement of 34.00Δ±4.18Δ(P〈0.05). There were significant differences between the pre-and postoperative elevation in each group(group A, P〈0.05; group B, P〈0.05). The average scale of improved elevation in group B(1.80±0.45) was not significantly better than that of group A(1.69±0.87; Z=-0.732, P=0.548). The average follow-up periods lasted 21 mo in group A and 18 mo in group B.CONCLUSION: For vertical deviations 〈30Δ, the standard Knapp procedure can be chosen. For deviations greater than 30Δ-40Δ, the Foster procedure should be chosen. Because of our early interference, the inferior rectus(IR) muscle did not show mechanical restriction. Monocular elevation deficiency(MED) should be diagnosed early so that complications will be reduced and the procedure will be easier for the surgeon.展开更多
In this paper, three different controllers are proposed and simulated for maglev guiding systems to have convenient and smooth elevator motion. The proposed controllers are PID, sliding mode, and PID sliding mode cont...In this paper, three different controllers are proposed and simulated for maglev guiding systems to have convenient and smooth elevator motion. The proposed controllers are PID, sliding mode, and PID sliding mode controllers. The advantages and disadvantages of the proposed controllers are discussed. Although, PID controller is fast, its response affected considerably by external disturbances. Unlike PID, the sliding mode controller is so robust, but its transient is unsuitable based on application conditions. However, an acceptable controller for ropeless elevator guiding system should guaranty the passengers safety and convenient. Consequently, the response of the system should be fast, robust, and without considerable overshoots and oscillations. These required advantages are compromised in the proposed parallel PID sliding mode controller. The affectivity of the introduced controllers for maglev guiding system is investigated through conducted simulations in MATLAB/Simulink environment. The obtained results illustrate that PID sliding mode controller is a so fast and robust controller for a ropeless elevator maglev guiding system.展开更多
In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Opti...In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.展开更多
The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. This is achieved with the integration of existing as well as acquired knowledge, in a decision modu...The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. This is achieved with the integration of existing as well as acquired knowledge, in a decision module implemented in the electronics of an elevator. So far, elevators do not exploit information regarding their recent usage. In the developed system decisions are driven based on information arising from monitoring the use of the elevator. Monitoring provides various records of usage which consequently are used to predict elevator’s future usage and to adapt accordingly its functioning. Till now, there are only elevators that encompass in their electronics algorithms with if then rules in order to control elevator’s functioning. However, these if then rules are based only on good practice knowledge of similar elevators installed in similar buildings. Even this knowledge which unavoidably is associated with uncertainty is not encoded in a mathematically consisted way in the algorithms. The design, the implementation and a first pilot evaluation study of an elevator’s intelligent decision module are presented. The study concludes that the presented application sufficiently reduces energy consumption through properly controlled functioning.展开更多
A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless s...A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.展开更多
Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuz...Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.展开更多
Nowadays, the elevator has become an indispensable means of indoor transportation in people’s life, but in recent years this kind of traffic tools has caused many casualties because of the gate system fault. In order...Nowadays, the elevator has become an indispensable means of indoor transportation in people’s life, but in recent years this kind of traffic tools has caused many casualties because of the gate system fault. In order to ensure the safe and reliable operation of the elevator, the failure of elevator door system was predicted in this paper. Against the fault type of elevator door system: elevator door opened, excessive vibration when elevator door opened or closed, elevator door did not open or closed when reached the specified level. Three fault types were used as the output of the prediction model. There were 8 reasons for the failure, used them as input. A model based on particle swarm optimization (PSO) and BP neural network was established, using MATLAB to emulation;the results showed that: PSO-BP neural network algorithm was feasible in the fault prediction of the elevator door system.展开更多
Compared with other elevator control systems, the wireless control system has many advantages such as easy to install and maintain. Bluetooth is a new technology of short-range wireless communication, and the idea of ...Compared with other elevator control systems, the wireless control system has many advantages such as easy to install and maintain. Bluetooth is a new technology of short-range wireless communication, and the idea of applying Bluetooth to the elevator wireless control system is expected to get wide application. In this paper, a wireless control prototype system is introduced, and the experiments of this system proved the feasibility of this idea.展开更多
基金Supported by National Natural Science Foundation of China (No60874077) Specialized Research Funds for Doctoral Program of Higher Education of China (No20060056054) Research Funds for Scientific Financing Projects of Quality Control Public Welfare Profession (No2007GYB172)
文摘Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.
文摘Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.
文摘How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with individual mobility in a sustainable and socially acceptable way?LiMo-2040 attempts to provide answers to these questions.It follows a holistic approach according to the criteria:As light,as compact and as simple(cost-effective)as possible.Modular e-vehicle concepts(consisting of vehicle cabin and chassis)are known,but have not yet been thought through to their logical conclusion.The LiMo cabin is not only a vehicle cabin,but also a component of a modern high-rise apartment.It therefore requires no parking space and combines urban living and individual mobility sustainably and cost-effectively.If a vehicle is needed,an app can be used to book a chassis that comes along autonomously and waits until the cabin,including its occupants,travels down a sophisticated rail system,docks and autonomously heads for the desired destination.
文摘In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demolishing them for new construction. However, a significant challenge arises from the lack of elevator designs in many of these existing RC buildings. Adding an external elevator becomes crucial to solving accessibility issues, enhancing property value, and satisfying modern residential buildings using convenient requirements. However, the structural performance of external elevator wells remains understudied. This research is designed by the actual external elevator project into existing RC buildings in Jinzhong Rd, Shanghai City. Specifically, this research examines five different external elevator wells under nonlinear pushover analysis, each varying in the height of the RC (Reinforced Concrete) footing. By analyzing plastic hinge states, performance points, capacity curves, spectrum curves, layer displacement, and drift ratio, this research aims to provide a comprehensive understanding of how these structures of the external elevator well respond to seismic events. The findings are expected to serve as a valuable reference for future external elevator projects, ensuring the external elevator designs meet the seismic requirements. By emphasizing seismic resistance in the design phase, the research aims to enhance the overall safety and longevity of external elevator systems integrated into existing RC buildings.
基金funded by the project National Institute for Neurological Research(Programme EXCELES,ID Project No.LX22NPO5107)TEAMING:857560(EU)CZ.02.1.01/0.0/0.0/17_043/0009632(CZ)(to FA and JH)。
文摘Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurological symptoms that influence personality,decision-making ability,and language.
文摘BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications.
文摘A new instrument for checking the quality of elevator guide rails is introduced.With this instrument,the general geometric errors such as straightness,flatness,squareness,twist,thickness and height can be measured automatically,simultaneously in a short time with high accuracy.It is very useful for elevator guide rail factories to improve their work efficiency and the quality of their products.
基金Supported by the Principal Fund Project of Tarim University(TDZKSSZD201207)~~
文摘The aim of the study is to simulate actual operation of an elevator. First, it designed elevator scheduling algorithm for control ing operation of the elevator;second, it simulated elevator operation by the use of object-oriented programming language, in which double buffering technology was used to solve the problem of elevator pictures flicker at refreshing; final y, test correctness and rationality of the system.
文摘In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents a new control method to restrain the sway of both ropes. This study considers varying rope lengths during elevator operation which cause other system parameters such as natural frequency, and damping ratio to be time-variant variables. The dynamics of the ropes are analyzed by solving the governing non-stationary, nonlinear equation numerically. In order to mitigate the vibration of ropes in several motion conditions, particularly upwards movement, downward movement, stopped at the lowest position, and stopped at the highest position, an active equipment is installed at the compensation sheave. The stability of the system using the controller is analyzed at four states: without disturbance and static car, without disturbance and mobile car, including disturbance and static car, and including disturbance and mobile car. The efficiency of the controller used for dampening the vibration of elevator ropes is validated by numerical simulation results.
基金Sponsored by the National Eleventh Five year Plan Key Project of Ministry of Science and Technology of China (Grant No. 2006BAJ03A05-05)
文摘To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized.
基金This project is supported by State Scientific Project of the Tenth Five-year Plan of China(No.2002BA208B02)National Natural Science Foundation of China(No.50305032).
文摘The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.
文摘In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.
文摘AIM: To describe the clinical features of congenital double elevator palsy(CDEP) and to evaluate various surgical outcomes between the standard Knapp and augmented Knapp procedures, based on improvements in primary eye position and ocular motility.METHODS: Twenty-two patients with CDEP at Shanghai Children's Hospital were enrolled from July 2014 to January 2018. The forced duction test(FDT) was negative in 21 patients, aged 8 mo to 12 y(mean 5.4 y). Patients were divided into two treatment groups: 16 patients underwent the standard Knapp procedure(group A), with or without horizontal squint procedure; and 5 patients underwent the augmented Knapp procedure(Foster procedure; group B). One patient underwent inferior rectus recession in the affected eye and superior rectus recession in the sound eye because of a positive FDT. The pre-and postoperative vertical deviations in the primary position and ocular motility were compared in the two groups.RESULTS: Twenty-one eyes of the 22 patients(95%) were aligned within 10 prism diopters(PD), and all patients(100%) reached ≥25% elevation improvement after surgery. The average corrected vertical deviation in group B was statistically better than that of group A. For group A, the vertical deviation in the primary position decreased from 24.75Δ±8.35Δ to 4.56Δ±8.07Δ after surgery, for an improvement of 23.06Δ±6.51Δ(P〈0.05). In group B, the decrease was from 35.00Δ±5.00Δ(range 30Δ-40Δ) to 1.00Δ±2.24Δ, for an improvement of 34.00Δ±4.18Δ(P〈0.05). There were significant differences between the pre-and postoperative elevation in each group(group A, P〈0.05; group B, P〈0.05). The average scale of improved elevation in group B(1.80±0.45) was not significantly better than that of group A(1.69±0.87; Z=-0.732, P=0.548). The average follow-up periods lasted 21 mo in group A and 18 mo in group B.CONCLUSION: For vertical deviations 〈30Δ, the standard Knapp procedure can be chosen. For deviations greater than 30Δ-40Δ, the Foster procedure should be chosen. Because of our early interference, the inferior rectus(IR) muscle did not show mechanical restriction. Monocular elevation deficiency(MED) should be diagnosed early so that complications will be reduced and the procedure will be easier for the surgeon.
文摘In this paper, three different controllers are proposed and simulated for maglev guiding systems to have convenient and smooth elevator motion. The proposed controllers are PID, sliding mode, and PID sliding mode controllers. The advantages and disadvantages of the proposed controllers are discussed. Although, PID controller is fast, its response affected considerably by external disturbances. Unlike PID, the sliding mode controller is so robust, but its transient is unsuitable based on application conditions. However, an acceptable controller for ropeless elevator guiding system should guaranty the passengers safety and convenient. Consequently, the response of the system should be fast, robust, and without considerable overshoots and oscillations. These required advantages are compromised in the proposed parallel PID sliding mode controller. The affectivity of the introduced controllers for maglev guiding system is investigated through conducted simulations in MATLAB/Simulink environment. The obtained results illustrate that PID sliding mode controller is a so fast and robust controller for a ropeless elevator maglev guiding system.
文摘In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.
文摘The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. This is achieved with the integration of existing as well as acquired knowledge, in a decision module implemented in the electronics of an elevator. So far, elevators do not exploit information regarding their recent usage. In the developed system decisions are driven based on information arising from monitoring the use of the elevator. Monitoring provides various records of usage which consequently are used to predict elevator’s future usage and to adapt accordingly its functioning. Till now, there are only elevators that encompass in their electronics algorithms with if then rules in order to control elevator’s functioning. However, these if then rules are based only on good practice knowledge of similar elevators installed in similar buildings. Even this knowledge which unavoidably is associated with uncertainty is not encoded in a mathematically consisted way in the algorithms. The design, the implementation and a first pilot evaluation study of an elevator’s intelligent decision module are presented. The study concludes that the presented application sufficiently reduces energy consumption through properly controlled functioning.
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.
文摘Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.
文摘Nowadays, the elevator has become an indispensable means of indoor transportation in people’s life, but in recent years this kind of traffic tools has caused many casualties because of the gate system fault. In order to ensure the safe and reliable operation of the elevator, the failure of elevator door system was predicted in this paper. Against the fault type of elevator door system: elevator door opened, excessive vibration when elevator door opened or closed, elevator door did not open or closed when reached the specified level. Three fault types were used as the output of the prediction model. There were 8 reasons for the failure, used them as input. A model based on particle swarm optimization (PSO) and BP neural network was established, using MATLAB to emulation;the results showed that: PSO-BP neural network algorithm was feasible in the fault prediction of the elevator door system.
文摘Compared with other elevator control systems, the wireless control system has many advantages such as easy to install and maintain. Bluetooth is a new technology of short-range wireless communication, and the idea of applying Bluetooth to the elevator wireless control system is expected to get wide application. In this paper, a wireless control prototype system is introduced, and the experiments of this system proved the feasibility of this idea.