With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic ...With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise.展开更多
Spread of fire smoke in the elevator shaft of a high-rise building is influ- enced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different suppl...Spread of fire smoke in the elevator shaft of a high-rise building is influ- enced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187℃ in 5 rain, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.展开更多
There are many potential hazards in the underground mining these include fire, explosion, inundation, roof collapse, toxic gases, chemical pollution, etc. Over past centuries, in US alone, more than 100 000 miners los...There are many potential hazards in the underground mining these include fire, explosion, inundation, roof collapse, toxic gases, chemical pollution, etc. Over past centuries, in US alone, more than 100 000 miners lost their life in different accidents. The primary safety methods used in underground mines concentrate on the monitoring of the hazardous gases, fire detection and ventilation. Using advanced instruments and monitoring techniques have significantly reduced the accidents in the modem mines. However despite the advancement of these monitoring facilities, accidents still occur in underground mining annually in the world, and many miners were killed because they were trapped and unable to escape due to blocked of exit access. Described a new development for the emergency evacuation system in underground mines and analyzed the advantages and disadvantages of the system. It is expected that the new system will greatly improve the emergency exit methods and save more lives in the future.展开更多
基金supported by Opening Foundation of Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,China(LNTCCMA-20210104)This work was also supported by the Natural Science Foundation of China(Grant No.51408113)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140632).
文摘With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise.
基金supported by the National Basic Research Program of China(2012CB719703)
文摘Spread of fire smoke in the elevator shaft of a high-rise building is influ- enced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187℃ in 5 rain, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.
文摘There are many potential hazards in the underground mining these include fire, explosion, inundation, roof collapse, toxic gases, chemical pollution, etc. Over past centuries, in US alone, more than 100 000 miners lost their life in different accidents. The primary safety methods used in underground mines concentrate on the monitoring of the hazardous gases, fire detection and ventilation. Using advanced instruments and monitoring techniques have significantly reduced the accidents in the modem mines. However despite the advancement of these monitoring facilities, accidents still occur in underground mining annually in the world, and many miners were killed because they were trapped and unable to escape due to blocked of exit access. Described a new development for the emergency evacuation system in underground mines and analyzed the advantages and disadvantages of the system. It is expected that the new system will greatly improve the emergency exit methods and save more lives in the future.