This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning...This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.展开更多
Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(M...Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP.展开更多
随着射频识别(Radio Frequency Identification,RFID)技术的发展,人们对其应用的要求越来越高,在阅读器部署方面的研究也逐渐深入。为了解决规定区域内RFID阅读器位置规划问题,在划定的区域内,以标签覆盖率、阅读器间的碰撞干扰、负载...随着射频识别(Radio Frequency Identification,RFID)技术的发展,人们对其应用的要求越来越高,在阅读器部署方面的研究也逐渐深入。为了解决规定区域内RFID阅读器位置规划问题,在划定的区域内,以标签覆盖率、阅读器间的碰撞干扰、负载均衡为目标来建立数学优化模型,在白鲸算法的基础上提出了一种改进型白鲸算法。首先,针对标准白鲸算法存在易陷入局部最优、丢失次优解的缺陷,提出了一种更新精英群体机制;其次,为了增强算法的探索能力,加入了反向学习策略;最后,运用该算法来解决RFID网络规划问题。通过在一定环境中放置不同数量集群和随机分布的标签,将改进型白鲸算法与粒子群算法、灰狼算法和标准白鲸算法进行对比。仿真结果表明,在相同环境下,改进型白鲸算法的性能相比粒子群算法平均提高了21.1%,比灰狼算法提高了28.5%,比白鲸算法提高了3.3%,说明该算法相比其他3种算法在搜索精度上具有更好的性能,并通过阅读器优化部署测试,验证了该应用的有效性和可行性。展开更多
文摘This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.
基金supported by the Xiamen University Malaysia Research Fund XMUMRF Grant No:XMUMRF/2019-C3/IECE/0007(received by R.M.Mehmood)The authors are grateful to the Taif University Researchers Supporting Project Number(TURSP-2020/79),Taif University,Taif,Saudi Arabia for funding this work(received by M.Shorfuzzaman).
文摘Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP.
文摘随着射频识别(Radio Frequency Identification,RFID)技术的发展,人们对其应用的要求越来越高,在阅读器部署方面的研究也逐渐深入。为了解决规定区域内RFID阅读器位置规划问题,在划定的区域内,以标签覆盖率、阅读器间的碰撞干扰、负载均衡为目标来建立数学优化模型,在白鲸算法的基础上提出了一种改进型白鲸算法。首先,针对标准白鲸算法存在易陷入局部最优、丢失次优解的缺陷,提出了一种更新精英群体机制;其次,为了增强算法的探索能力,加入了反向学习策略;最后,运用该算法来解决RFID网络规划问题。通过在一定环境中放置不同数量集群和随机分布的标签,将改进型白鲸算法与粒子群算法、灰狼算法和标准白鲸算法进行对比。仿真结果表明,在相同环境下,改进型白鲸算法的性能相比粒子群算法平均提高了21.1%,比灰狼算法提高了28.5%,比白鲸算法提高了3.3%,说明该算法相比其他3种算法在搜索精度上具有更好的性能,并通过阅读器优化部署测试,验证了该应用的有效性和可行性。