期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
2
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm
3
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Satellite constellation design with genetic algorithms based on system performance
4
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
下载PDF
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:3
5
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (NSGA-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
6
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
下载PDF
Robust Optimization Method of Cylindrical Roller Bearing by Maximizing Dynamic Capacity Using Evolutionary Algorithms
7
作者 Kumar Gaurav Rajiv Tiwari Twinkle Mandawat 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第5期20-40,共21页
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h... Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones. 展开更多
关键词 cylindrical roller bearing OPTIMIZATION robust design elitist non-dominating sorting genetic algorithm(NSGA-II) fatigue life dynamic load carrying capacity
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
8
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:2
9
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm II(NSGA-II)
下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
10
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm Ⅱ(NSGA-Ⅱ)
下载PDF
Non-dominated sorting based multi-page photo collage
11
作者 Yu Song Fan Tang +1 位作者 Weiming Dong Changsheng Xu 《Computational Visual Media》 SCIE EI CSCD 2022年第2期199-212,共14页
The development of social networking services(SNSs)revealed a surge in image sharing.The sharing mode of multi-page photo collage(MPC),which posts several image collages at a time,can often be observed on many social ... The development of social networking services(SNSs)revealed a surge in image sharing.The sharing mode of multi-page photo collage(MPC),which posts several image collages at a time,can often be observed on many social network platforms,which enables uploading images and arrangement in a logical order.This study focuses on the construction of MPC for an image collection and its formulation as an issue of joint optimization,which involves not only the arrangement in a single collage but also the arrangement among different collages.Novel balance-aware measurements,which merge graphic features and psychological achievements,are introduced.Non-dominated sorting genetic algorithm is adopted to optimize the MPC guided by the measurements.Experiments demonstrate that the proposed method can lead to diverse,visually pleasant,and logically clear MPC results,which are comparable to manually designed MPC results. 展开更多
关键词 multi-page photo collage balance-aware measurements non-dominated sorting genetic algorithm
原文传递
失效情景下考虑拥堵及偏好的多式联运路径选择 被引量:1
12
作者 赵旭 刘浩 胡世浩 《上海海事大学学报》 北大核心 2024年第1期30-38,共9页
为保障集装箱运输的经济性,有效规避新冠疫情所造成的风险和损失,助力交通运输业绿色低碳发展,提出失效情景下以多式联运经营人利润最大和运输碳排放总量最小为目标的多目标0-1规划模型。模型不仅考虑节点及路径失效的不确定性,还考虑... 为保障集装箱运输的经济性,有效规避新冠疫情所造成的风险和损失,助力交通运输业绿色低碳发展,提出失效情景下以多式联运经营人利润最大和运输碳排放总量最小为目标的多目标0-1规划模型。模型不仅考虑节点及路径失效的不确定性,还考虑失效后的拥堵及托运人偏好等影响路径选择的因素。采用蒙特卡洛方法(Monte Carlo method,MCM)结合带精英策略的非支配排序遗传算法(elitist non-dominated sorting genetic algorithm,NSGA-Ⅱ)的混合算法(MCM-NSGA-Ⅱ)对模型进行求解,并以武汉到柏林的集装箱运输为例验证模型及算法的有效性。研究结果表明:托运人偏好、失效及失效后的拥堵会对运输方案的利润、碳排放量、时间产生影响,从而改变帕累托最优运输方案。研究可为制定并优化多式联运方案提供决策支持。 展开更多
关键词 多式联运 失效 拥堵 托运人偏好 蒙特卡洛方法(MCM) 带精英策略的非支配排序遗传算法(NSGA-Ⅱ)
下载PDF
A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance
13
作者 Chao-Lung Yang Melkamu Mengistnew Teshome +1 位作者 Yu-Zhen Yeh Tamrat Yifter Meles 《Computers, Materials & Continua》 SCIE EI 2024年第6期3519-3547,共29页
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t... In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical. 展开更多
关键词 Corrective maintenance multi-objective optimization non-dominated sorting genetic algorithm operator allocation maintenance station location
下载PDF
基于改进NSGA-Ⅱ算法的风力机叶片多目标优化设计 被引量:16
14
作者 王珑 王同光 +1 位作者 吴江海 罗源 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第5期672-676,共5页
一种结合了精英控制策略和动态拥挤距离方法的改进的快速支配排序算法(Fast and elitist non-dominat-ed sorting genetic algorithm,NSGA-Ⅱ)被用于风力机复杂的多目标优化设计中。作为此算法的应用算例,以风轮的年发电量最大、叶片的... 一种结合了精英控制策略和动态拥挤距离方法的改进的快速支配排序算法(Fast and elitist non-dominat-ed sorting genetic algorithm,NSGA-Ⅱ)被用于风力机复杂的多目标优化设计中。作为此算法的应用算例,以风轮的年发电量最大、叶片的质量最小和叶片根部的极限推力最小为目标,分别进行了两目标和三目标的1.5 MW风力机叶片的优化设计。研究表明:两目标优化给出的Pareto最优解集分布在一条曲线上,而三目标的优化结果基本分布在一个有明显边界的五阶曲面上。同时也可以看出,此算法在处理风力机多目标优化问题取得了良好的效果,给出的是一个Pareto最优解集,而不是传统优化方法追求的单个最优解,为风力机多目标优化设计提供通用的算法。 展开更多
关键词 风力机 多目标优化设计 改进的快速支配排序算法 PARETO最优解
下载PDF
基于快速非支配排序遗传算法的船舶电力系统多目标故障重构 被引量:10
15
作者 王家林 夏立 +1 位作者 吴正国 杨宣访 《电网技术》 EI CSCD 北大核心 2012年第11期58-64,共7页
为避免已有船舶电力系统故障重构方法中将多目标优化问题通过加权转化为单目标优化问题进行求解而产生的问题,以失电负荷最少、开关操作代价最小为目标函数,利用带精英策略的快速非支配排序遗传算法实现故障重构多目标、多约束问题求解... 为避免已有船舶电力系统故障重构方法中将多目标优化问题通过加权转化为单目标优化问题进行求解而产生的问题,以失电负荷最少、开关操作代价最小为目标函数,利用带精英策略的快速非支配排序遗传算法实现故障重构多目标、多约束问题求解,该算法求得的Pareto最优解分布均匀,得到的最优重构方案集具有稳定性和多样性。得到故障重构方案集后,对系统运行的安全性、可靠性、高效运行性等指标进行归一化处理,得到综合辅助评价函数作为各故障重构方案辅助评价指标。算例测试结果表明,该方法能避免单目标优化算法对权值的过分依赖等缺点,能够兼顾多个指标,得出的最优故障重构方案更加符合实际。 展开更多
关键词 船舶电力系统 故障重构 多目标优化 精英策略 快速非支配排序遗传算法 综合辅助评价指标
下载PDF
基于模糊时间窗的多目标冷链配送优化 被引量:21
16
作者 李倩 蒋丽 梁昌勇 《计算机工程与应用》 CSCD 北大核心 2021年第23期255-262,共8页
随着生鲜冷链行业竞争逐渐白热化,成本高、时效性强、新鲜度难以保持等问题已成为制约冷链物流配送的瓶颈。为提高生鲜配送效率,考虑客户满意度,以货损成本、惩罚成本等综合配送成本最低为目标函数,构建了一个多目标配送路径优化模型。... 随着生鲜冷链行业竞争逐渐白热化,成本高、时效性强、新鲜度难以保持等问题已成为制约冷链物流配送的瓶颈。为提高生鲜配送效率,考虑客户满意度,以货损成本、惩罚成本等综合配送成本最低为目标函数,构建了一个多目标配送路径优化模型。设计带精英策略的非支配排序遗传算法(Elitist Non-dominated Sorting Genetic Algorithm,NSGA-Ⅱ)求解该问题,利用Solomon标准数据集进行仿真模拟实验。实验结果对比分析表明,考虑满意度时冷链物流配送所需车辆更少,总路径长度更短,设计的算法可以在较短的时间内获取到帕累托最优解集,能够有效地解决模糊时间窗下的配送路径优化问题。 展开更多
关键词 带时间窗的车辆路径问题(VRPTW) 冷链物流 带精英策略的非支配排序遗传算法(NSGA-Ⅱ) 多目标优化
下载PDF
基于全寿命抗震性能的近海桥梁结构多目标优化设计方法 被引量:11
17
作者 柳春光 张士博 柳英洲 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第1期39-46,共8页
投资-效益准则是基于结构性能抗震设计的重要原则,它所追求的设计目标是在结构的初始造价与地震损失期望之间达到一种和谐的优化平衡,使结构在全寿命周期内总费用最小.在以上的单目标优化模型基础上,提出了考虑结构初始造价、损伤期望... 投资-效益准则是基于结构性能抗震设计的重要原则,它所追求的设计目标是在结构的初始造价与地震损失期望之间达到一种和谐的优化平衡,使结构在全寿命周期内总费用最小.在以上的单目标优化模型基础上,提出了考虑结构初始造价、损伤期望、检查和维护费用、拆除费用及残余价值和环境污染费用的多目标全寿命优化设计模型.基于所提出的多目标优化设计模型,应用精英保留非劣排序遗传算法,建立了以截面尺寸、纵筋和箍筋的配筋率为决策变量的近海桥梁结构全寿命抗震性能多目标优化设计模型,并给出了优化设计流程及具体实现.结果表明:得到的非劣解在目标空间分布均匀,算法收敛性和鲁棒性较好. 展开更多
关键词 投资-效益准则 全寿命造价 多目标优化模型 精英保留非劣排序遗传算法
下载PDF
计及碳排放的风-光-抽水蓄能系统容量优化配置方法 被引量:32
18
作者 刘忠 陈星宇 +2 位作者 邹淑云 潘宜桦 李金铭 《电力系统自动化》 EI CSCD 北大核心 2021年第22期9-18,共10页
合理的系统容量配置方案是开发利用可再生能源的重要基础。文中提出了一种并网型风-光-抽水蓄能联合运行系统容量优化配置方法,该方法以成本最低、经济效益最大、碳排放量最小为优化目标建立系统模型,基于中国东南沿海某近陆海岛的真实... 合理的系统容量配置方案是开发利用可再生能源的重要基础。文中提出了一种并网型风-光-抽水蓄能联合运行系统容量优化配置方法,该方法以成本最低、经济效益最大、碳排放量最小为优化目标建立系统模型,基于中国东南沿海某近陆海岛的真实数据,采用带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ)对模型进行求解。然后,引入灰色关联分析法实现无偏折中策略获取最优容量配置方案。仿真结果表明,联合运行系统能在最大限度利用风能和太阳能的基础上实现连续稳定运行;引入灰色关联分析法决策最优容量配置方案是可行的,且联合运行系统在全项目周期里的碳排放量随着灰色关联度的增大而减小;适当提高风电和光伏发电入网率能够降低系统成本、提高经济效益、减少碳排放量。 展开更多
关键词 容量配置 三目标优化 联合运行系统 碳排放 带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ) 灰色关联分析法
下载PDF
多工作日历下的大型工程项目多目标任务指派优化方法 被引量:4
19
作者 曾强 袁明明 张进春 《计算机集成制造系统》 EI CSCD 北大核心 2019年第5期1223-1237,共15页
为解决多工作日历下大型工程项目任务指派问题,提出一种多目标优化方法。建立了以项目工期最短、成本最低为优化目标,考虑多工作日历约束的大型工程项目多目标任务指派优化模型;提出基于多工作日历的时间推算方法,解决了多工作日历下工... 为解决多工作日历下大型工程项目任务指派问题,提出一种多目标优化方法。建立了以项目工期最短、成本最低为优化目标,考虑多工作日历约束的大型工程项目多目标任务指派优化模型;提出基于多工作日历的时间推算方法,解决了多工作日历下工程项目任务指派的关键问题。设计了带精英策略的快速非支配排序遗传算法求解优化模型,其中编码采用基于承包商号的整数编码方式,交叉操作采用两点交叉方式,变异操作采用单点变异方式。种群初始化采用拒绝策略以保证个体可行性,变异过程采用修复策略以保证子代个体的可行性。解码操作根据各任务被指派的承包商号数组,在任务成本数组中查出任务成本,对各任务成本求和得到项目成本;在任务时间数组中查出任务时间,基于关键路径法采用正向推算函数FC得到各任务最早开工时刻、最早完工时刻,进而求出项目工期。进化结束后将所得到的Pareto解集存入工作表“Pareto解集”,当决策人员双击某个Pareto解时,算法基于关键路径法采用正向顺推函数FC和反向逆推函数IC得到其对应的调度矩阵。通过案例分析验证了所提方法的有效性。 展开更多
关键词 任务指派 多工作日历 大型工程项目 多目标优化 带精英策略的快速非支配排序遗传算法 时间推算
下载PDF
基于带精英策略遗传算法的舰艇编队目标分配 被引量:3
20
作者 牛晓博 陈新来 +1 位作者 朱飞 方群 《现代防御技术》 北大核心 2015年第4期117-123,共7页
结合现代海战海军编队作战样式及作战武器的特点,建立了新的舰艇编队武器分配模型,将舰艇编队目标分配问题抽象化为多目标优化问题,该模型可以在保证我方重点目标得到保护的前提下,达到总体效果最优和总体耗损最小。采用带精英策略的快... 结合现代海战海军编队作战样式及作战武器的特点,建立了新的舰艇编队武器分配模型,将舰艇编队目标分配问题抽象化为多目标优化问题,该模型可以在保证我方重点目标得到保护的前提下,达到总体效果最优和总体耗损最小。采用带精英策略的快速非支配进化算法对舰艇编队目标分配问题进行求解。该算法求得的Pareto最优解分布均匀,收敛性和鲁棒性好。该算法一次运行可以获得多个Pareto最优解,决策者可以根据实际战场环境选择最终满意解,为各目标函数之间的均衡分析提供了有效的工具。最后,通过仿真及与其他算法的对比证明了模型及算法的有效性。 展开更多
关键词 舰艇编队 目标分配 带精英策略的快速非支配进化算法 多目标优化
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部