AIM To investigate the antitumor effects and underlying mechanisms of(17 R,18 R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt(YLG-1)-induced photodynamic therapy(PDT) on pancreatic cancer in vitro and in v...AIM To investigate the antitumor effects and underlying mechanisms of(17 R,18 R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt(YLG-1)-induced photodynamic therapy(PDT) on pancreatic cancer in vitro and in vivo.METHODS YLG-1 is a novel photosensitizer extracted from spirulina. Its phototoxicity, cellular uptake and localization, as well as its effect on reactive oxygen species(ROS) production, apoptosis, and expression of apoptosis-associated proteins were detected in vitro. An in vivo imaging system(IVIS), the Lumina K imaging system, and mouse models of subcutaneous Panc-1-bearing tumors were exploited to evaluate the drug delivery pathway and pancreatic cancer growth in vivo.RESULTS YLG-1 was localized to the mitochondria, and the appropriate incubation time was 6 h. Under 650 nm light irradiation, YLG-1-PDT exerted a potent cytotoxic effect on pancreatic cancer cells in vitro, which could be abolished by the ROS scavenger N-acetyl-L-cysteine(NAC). The death mode caused by YLG-1-PDT was apoptosis, accompanied by upregulated Bax and cleaved Caspase-3 and decreased Bcl-2 expression. The results from the IVIS images suggested that the optimal administration route was intratumoral(IT) injection and that the best time to conduct YLG-1-PDT was 2 h post-IT injection. Consistent with the results in vitro, YLG-1-PDT showed great growth inhibition effects on pancreatic cancer cells in a mouse model.CONCLUSION YLG-1 is a potential photosensitizer for pancreatic cancer PDT via IT injection, the mechanisms of which are associated with inducing ROS and promoting apoptosis.展开更多
Photodynamic therapy(PDT)usually shows limited efficacy in solid tumors since traditional PDT is O_(2)^(-)dependent while solid tumors are inherently hypoxic.In addition,hypoxic tumor cells possess antiapoptotic pathw...Photodynamic therapy(PDT)usually shows limited efficacy in solid tumors since traditional PDT is O_(2)^(-)dependent while solid tumors are inherently hypoxic.In addition,hypoxic tumor cells possess antiapoptotic pathways that resist PDT-induced apoptosis.Therefore,developing photosensitizers(PSs)that show low O_(2)^(-)dependency and can induce nonapoptotic cell death pathways is critically needed.Herein,a series of Ru(II)polypyridine complex-based PSs,RuNMe,RuH,and RuCN,were synthesized,and their applications against hypoxic tumor cells through PDT were investigated.All three complexes showthe ability to generate the superoxide anion radical(·O_(2)^(-)),which is the type I photoreaction and less O_(2)^(-)dependent.RuNMe shows the best PDT performance against MCF-7 cells and three-dimensional multicellular spheroids,due to its higher cellular uptake and more reactive oxygen species generation.More importantly,RuNMe-incubated MCF-7 cells show photoinduced ferroptosis as evidenced by glutathione peroxidase 4 downregulation and lipid peroxide accumulation.This work not only develops a novel ferroptosis-inducing Ru(II)complex with the type I PDT process but also offers an effective strategy to solve tumor hypoxia in PDT.展开更多
基金Supported by National Natural Science Foundation of China,No.81472844
文摘AIM To investigate the antitumor effects and underlying mechanisms of(17 R,18 R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt(YLG-1)-induced photodynamic therapy(PDT) on pancreatic cancer in vitro and in vivo.METHODS YLG-1 is a novel photosensitizer extracted from spirulina. Its phototoxicity, cellular uptake and localization, as well as its effect on reactive oxygen species(ROS) production, apoptosis, and expression of apoptosis-associated proteins were detected in vitro. An in vivo imaging system(IVIS), the Lumina K imaging system, and mouse models of subcutaneous Panc-1-bearing tumors were exploited to evaluate the drug delivery pathway and pancreatic cancer growth in vivo.RESULTS YLG-1 was localized to the mitochondria, and the appropriate incubation time was 6 h. Under 650 nm light irradiation, YLG-1-PDT exerted a potent cytotoxic effect on pancreatic cancer cells in vitro, which could be abolished by the ROS scavenger N-acetyl-L-cysteine(NAC). The death mode caused by YLG-1-PDT was apoptosis, accompanied by upregulated Bax and cleaved Caspase-3 and decreased Bcl-2 expression. The results from the IVIS images suggested that the optimal administration route was intratumoral(IT) injection and that the best time to conduct YLG-1-PDT was 2 h post-IT injection. Consistent with the results in vitro, YLG-1-PDT showed great growth inhibition effects on pancreatic cancer cells in a mouse model.CONCLUSION YLG-1 is a potential photosensitizer for pancreatic cancer PDT via IT injection, the mechanisms of which are associated with inducing ROS and promoting apoptosis.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.22122701,21731004,91953201,92153303,21977044,and 21907050)the Natural Science Foundation of Jiangsu Province(grant nos.BK20202004 and BK20190282)the Excellent Research Program of Nanjing University(grant no.ZYJH004).
文摘Photodynamic therapy(PDT)usually shows limited efficacy in solid tumors since traditional PDT is O_(2)^(-)dependent while solid tumors are inherently hypoxic.In addition,hypoxic tumor cells possess antiapoptotic pathways that resist PDT-induced apoptosis.Therefore,developing photosensitizers(PSs)that show low O_(2)^(-)dependency and can induce nonapoptotic cell death pathways is critically needed.Herein,a series of Ru(II)polypyridine complex-based PSs,RuNMe,RuH,and RuCN,were synthesized,and their applications against hypoxic tumor cells through PDT were investigated.All three complexes showthe ability to generate the superoxide anion radical(·O_(2)^(-)),which is the type I photoreaction and less O_(2)^(-)dependent.RuNMe shows the best PDT performance against MCF-7 cells and three-dimensional multicellular spheroids,due to its higher cellular uptake and more reactive oxygen species generation.More importantly,RuNMe-incubated MCF-7 cells show photoinduced ferroptosis as evidenced by glutathione peroxidase 4 downregulation and lipid peroxide accumulation.This work not only develops a novel ferroptosis-inducing Ru(II)complex with the type I PDT process but also offers an effective strategy to solve tumor hypoxia in PDT.