期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
A Comprehensive Method to Reject Detection Outliers by Combining Template Descriptor with Sparse 3D Point Clouds
1
作者
郭立
《Journal of Shanghai Jiaotong university(Science)》
EI
2017年第2期188-192,共5页
We are using a template descriptor on the image in order to try and find the object. However, we have a sparse 3D point clouds of the world that is not used at all when looking for the object in the images. Considerin...
We are using a template descriptor on the image in order to try and find the object. However, we have a sparse 3D point clouds of the world that is not used at all when looking for the object in the images. Considering there are many false alarms during the detection, we are interested in exploring how to combine the detections on the image with the 3D point clouds in order to reject some detection outliers. In this experiment we use semi-direct-monocular visual odometry (SVO) to provide 3D points coordinates and camera poses to project 3D points to 2D image coordinates. By un-projecting points in the tracking on the selection tree (TST) detection box back to 3D space, we can use 3D Gaussian ellipsoid fitting to determine object scales. By ruling out different scales of detected objects, we can reject most of the detection outliers of the object. © 2017, Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg.
展开更多
关键词
semi-direct-monocular
visual
odometry(SVO)
tracking
on
the
selection
tree(TST)-recognizer
3D
point-clouds
Gaussian
ellipsoid
fitting
原文传递
题名
A Comprehensive Method to Reject Detection Outliers by Combining Template Descriptor with Sparse 3D Point Clouds
1
作者
郭立
机构
Honors College
出处
《Journal of Shanghai Jiaotong university(Science)》
EI
2017年第2期188-192,共5页
文摘
We are using a template descriptor on the image in order to try and find the object. However, we have a sparse 3D point clouds of the world that is not used at all when looking for the object in the images. Considering there are many false alarms during the detection, we are interested in exploring how to combine the detections on the image with the 3D point clouds in order to reject some detection outliers. In this experiment we use semi-direct-monocular visual odometry (SVO) to provide 3D points coordinates and camera poses to project 3D points to 2D image coordinates. By un-projecting points in the tracking on the selection tree (TST) detection box back to 3D space, we can use 3D Gaussian ellipsoid fitting to determine object scales. By ruling out different scales of detected objects, we can reject most of the detection outliers of the object. © 2017, Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg.
关键词
semi-direct-monocular
visual
odometry(SVO)
tracking
on
the
selection
tree(TST)-recognizer
3D
point-clouds
Gaussian
ellipsoid
fitting
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
A Comprehensive Method to Reject Detection Outliers by Combining Template Descriptor with Sparse 3D Point Clouds
郭立
《Journal of Shanghai Jiaotong university(Science)》
EI
2017
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部