This paper computes the conductance of an open ellipse cavity and discusses the effect of finite leads on conductance. The lead introduces mode coupling with bound states in the cavity which contributes to Fano resona...This paper computes the conductance of an open ellipse cavity and discusses the effect of finite leads on conductance. The lead introduces mode coupling with bound states in the cavity which contributes to Fano resonant line shapes in conductance. By examining the resonant states in the cavity, the effects of state mixing and annular probability distribution of wave function due to the presence of leads are found. The results have been compared with the transport properties of other systems. The finite leads result in two effects, i.e. the evanescent mode contribution and additional oscillations, to the conductance.展开更多
In this paper,the dynamic stress concentration and scattering of SH-waves by bi-material structures that possess an interface elliptic cavity are investigated.First,by using the complex function method,the Green's...In this paper,the dynamic stress concentration and scattering of SH-waves by bi-material structures that possess an interface elliptic cavity are investigated.First,by using the complex function method,the Green's function is constructed.This yields the solution of the displacement field for an elastic half space with a semi-elliptic canyon impacted by an anti-plane harmonic line source loading on the horizontal surface.Then,the problem is divided into an upper and lower half space along the horizontal interface,regarded as a harmony model.In order to satisfy the integral continuity condition, the unknown anti-plane forces are applied to the interface.The integral equations with unknown forces can be established through the continuity condition,and after transformation,the algebraic equations are solved numerically.Finally,the distribution of the dynamic stress concentration factor(DSCF)around the elliptic cavity is given and the effect of different parameters on DSCF is discussed.展开更多
Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are i...Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are introduced to solve scattering by an arbitrary cavity for the Helmholtz equation with variable coefficient through the transformed standard Helmholtz equation with a circular cavity. The medium density depends on the distance from the origin with a power-law variation and the shear elastic modulus is constant. The complex-value displacements and stresses of the in.homogeneous medium are explicitly obtained and the distributions of the dynamic stress for the case of an elliptical cavity are discussed. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Numerical results demonstrate that the wave number, inhomogeneous parameters and different values of aspect ratio have significant influence on the dynamic stress concentration factors around the elliptical cavity.展开更多
Analyzed is natural transient convection followed by steady-state convection in an elliptical cavity heated from below, using a spectral finite difference scheme in terms of a Dim expansion. The major or minor axis of...Analyzed is natural transient convection followed by steady-state convection in an elliptical cavity heated from below, using a spectral finite difference scheme in terms of a Dim expansion. The major or minor axis of the elliptic section of the cavity is assumed to be placed horizontally. As a thermal boundary condition, Dirichlet or Neumann condition is specified. Not only for nearly pure-heat conduction case at low Grashof numbers but also for strong convection flow with cellular patterns at larger Grashof numbers are found to be attained at least for some combination of Prandtl numbers and geometrical parameters.展开更多
This paper presents an elastic solution to the pressure-controlled elliptical cavity expansion problem under the anisotropic stress conditions. The problem is formulated by the assumption that an initial elliptical ca...This paper presents an elastic solution to the pressure-controlled elliptical cavity expansion problem under the anisotropic stress conditions. The problem is formulated by the assumption that an initial elliptical cavity is expanded under a uniform pressure and subjected to an in-plane initial horizontal pressure Kσ_0 and vertical pressure σ_0 at infinity. A conformal mapping technique is used to map the outer region of the initial elliptical cavity in the physical plane onto the inner region of a unit circle in the phase plane. Using the complex variable theory, the stress functions are derived; hence, the stress and displacement distributions around the elliptical cavity wall can be obtained. Furthermore, a closed-form solution to the pressure-expansion relationship is presented based on the elastic solution to the stress and displacement. Next, the proposed analytical solutions are validated by comparing with the Kirsch's solution and the finite element method(FEM). The solution to the presented pressure-controlled elliptical cavity expansion can be applied to two cases in practice. One is to employ the solution to the interpretation of the shear modulus of the soil or rocks and the in-situ stress in the pre-bored pressuremeter test under the lateral anisotropic initial stress condition. The other is the interpretation of the membrane expansion of a flat dilatometer test using the pressure-controlled elliptical cavity expansion solution. The two cases in practice confirm the usefulness of the present analytical solution.展开更多
Background A lowβsuperconducting elliptical cavity was designed for the China Spallation Neutron Source phase II project(CSNS-II).Methods The method to improve the mechanical stability of the lowβsuperconducting ell...Background A lowβsuperconducting elliptical cavity was designed for the China Spallation Neutron Source phase II project(CSNS-II).Methods The method to improve the mechanical stability of the lowβsuperconducting elliptical cavity was introduced,and the corresponding mechanical design was given.The software COMSOL Multiphysics and ANSYS APDL were used to calculate the static Lorentz force detuning factor k_(L)(LFD)and the helium pressure sensitivity factor k_(p)(DFDP)of the bare cavity,which were−4.71 Hz(MV/m)^(−2) and−21.1 Hz/mbar,respectively.The double-ring stiffeners reinforcement scheme was adopted.Results The radii of the double-ring stiffeners were 70 and 135 mm,respectively.The structure design of the helium vessel of the cavity was given.The following is the mechanical parameters of the reinforced cavity,the tuning sensitivity is 199.8 kHz/mm,longitudinal stiffness is 4.76kN/mm,k_(L) and k_(p) were−1.39 Hz(MV/m)^(−2) and 4.67 Hz/mbar,respectively,which met the operating requirements.The tuning sensitivity and stiffness of the reinforced cavity with different wall thicknesses were optimized,and the final wall thickness was selected as 4 mm.Conclusion The mechanical design of CSNS-II 648 MHz five-cell lowβsuperconducting elliptical cavity was introduced systematically in the paper.The LFD,DFDP,and the maximum surface stress of the cavity were reduced by optimizing the cavity wall thickness and the position of the double-ring stiffeners.The reinforced cavity met operational requirements.展开更多
5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven subcritical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with ra...5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven subcritical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574121, 90406024 and 10025420), Chinese Education Ministry and Chinese Academy of Sciences.
文摘This paper computes the conductance of an open ellipse cavity and discusses the effect of finite leads on conductance. The lead introduces mode coupling with bound states in the cavity which contributes to Fano resonant line shapes in conductance. By examining the resonant states in the cavity, the effects of state mixing and annular probability distribution of wave function due to the presence of leads are found. The results have been compared with the transport properties of other systems. The finite leads result in two effects, i.e. the evanescent mode contribution and additional oscillations, to the conductance.
文摘In this paper,the dynamic stress concentration and scattering of SH-waves by bi-material structures that possess an interface elliptic cavity are investigated.First,by using the complex function method,the Green's function is constructed.This yields the solution of the displacement field for an elastic half space with a semi-elliptic canyon impacted by an anti-plane harmonic line source loading on the horizontal surface.Then,the problem is divided into an upper and lower half space along the horizontal interface,regarded as a harmony model.In order to satisfy the integral continuity condition, the unknown anti-plane forces are applied to the interface.The integral equations with unknown forces can be established through the continuity condition,and after transformation,the algebraic equations are solved numerically.Finally,the distribution of the dynamic stress concentration factor(DSCF)around the elliptic cavity is given and the effect of different parameters on DSCF is discussed.
基金National Science&Technology Pillar Program under Grant No.2015BAK17B06Natural Science Foundation of Heilongjiang Province,China under Grant No.A201310+1 种基金Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province,China under Grant No.LBH-Q13040the Fundamental Research Funds for the Central Universities of China under Grant No.HEUCF150203
文摘Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are introduced to solve scattering by an arbitrary cavity for the Helmholtz equation with variable coefficient through the transformed standard Helmholtz equation with a circular cavity. The medium density depends on the distance from the origin with a power-law variation and the shear elastic modulus is constant. The complex-value displacements and stresses of the in.homogeneous medium are explicitly obtained and the distributions of the dynamic stress for the case of an elliptical cavity are discussed. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Numerical results demonstrate that the wave number, inhomogeneous parameters and different values of aspect ratio have significant influence on the dynamic stress concentration factors around the elliptical cavity.
文摘Analyzed is natural transient convection followed by steady-state convection in an elliptical cavity heated from below, using a spectral finite difference scheme in terms of a Dim expansion. The major or minor axis of the elliptic section of the cavity is assumed to be placed horizontally. As a thermal boundary condition, Dirichlet or Neumann condition is specified. Not only for nearly pure-heat conduction case at low Grashof numbers but also for strong convection flow with cellular patterns at larger Grashof numbers are found to be attained at least for some combination of Prandtl numbers and geometrical parameters.
基金supported by the National Natural Science Foundation of China(Grant No.51278170)the National Science Joint High Speed Railway Foundation of China(Grant No.U1134207)+1 种基金the"111"Project(Grant No.B13024)the Fundamental Research Funds for the Central Universities(Grant No.2014B02814)
文摘This paper presents an elastic solution to the pressure-controlled elliptical cavity expansion problem under the anisotropic stress conditions. The problem is formulated by the assumption that an initial elliptical cavity is expanded under a uniform pressure and subjected to an in-plane initial horizontal pressure Kσ_0 and vertical pressure σ_0 at infinity. A conformal mapping technique is used to map the outer region of the initial elliptical cavity in the physical plane onto the inner region of a unit circle in the phase plane. Using the complex variable theory, the stress functions are derived; hence, the stress and displacement distributions around the elliptical cavity wall can be obtained. Furthermore, a closed-form solution to the pressure-expansion relationship is presented based on the elastic solution to the stress and displacement. Next, the proposed analytical solutions are validated by comparing with the Kirsch's solution and the finite element method(FEM). The solution to the presented pressure-controlled elliptical cavity expansion can be applied to two cases in practice. One is to employ the solution to the interpretation of the shear modulus of the soil or rocks and the in-situ stress in the pre-bored pressuremeter test under the lateral anisotropic initial stress condition. The other is the interpretation of the membrane expansion of a flat dilatometer test using the pressure-controlled elliptical cavity expansion solution. The two cases in practice confirm the usefulness of the present analytical solution.
基金Work supported by Project of Basic and Applied Basic Research Fund of Guangdong Province:Yue Guan joint fund(2019B1515120012).
文摘Background A lowβsuperconducting elliptical cavity was designed for the China Spallation Neutron Source phase II project(CSNS-II).Methods The method to improve the mechanical stability of the lowβsuperconducting elliptical cavity was introduced,and the corresponding mechanical design was given.The software COMSOL Multiphysics and ANSYS APDL were used to calculate the static Lorentz force detuning factor k_(L)(LFD)and the helium pressure sensitivity factor k_(p)(DFDP)of the bare cavity,which were−4.71 Hz(MV/m)^(−2) and−21.1 Hz/mbar,respectively.The double-ring stiffeners reinforcement scheme was adopted.Results The radii of the double-ring stiffeners were 70 and 135 mm,respectively.The structure design of the helium vessel of the cavity was given.The following is the mechanical parameters of the reinforced cavity,the tuning sensitivity is 199.8 kHz/mm,longitudinal stiffness is 4.76kN/mm,k_(L) and k_(p) were−1.39 Hz(MV/m)^(−2) and 4.67 Hz/mbar,respectively,which met the operating requirements.The tuning sensitivity and stiffness of the reinforced cavity with different wall thicknesses were optimized,and the final wall thickness was selected as 4 mm.Conclusion The mechanical design of CSNS-II 648 MHz five-cell lowβsuperconducting elliptical cavity was introduced systematically in the paper.The LFD,DFDP,and the maximum surface stress of the cavity were reduced by optimizing the cavity wall thickness and the position of the double-ring stiffeners.The reinforced cavity met operational requirements.
基金Supported by China ADS Project(XDA03020000)National Natural Science Foundation of China(11475203)
文摘5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven subcritical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper.