Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signi...The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signing. The scheme not only meets the requirements of anonymity and traceability of group signature but also can withstand Tseng and Wang's conspiracy attack. It allows the group manager to add new members and delete old members according to actual application, while the system parameters have a little change. Cryptanalysis result shows that the scheme is efficient and secure.展开更多
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif...We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.展开更多
The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to t...The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to the serious secure leak in IEEES02.11 standards, it is impossible to utterly solve the problem by simply adding some remedies. Based on the analysis on the security mechanism of WLAN and the latest techniques of WI.AN security, a solution to WLAN security was presented. The solution makes preparation for the further combination of WLAN and Internet.展开更多
The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem i...The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem is compulsory to provide necessary security services.Elliptic curve cryptosystem(ECC)has been introduced as a considerable option.However,the usual sequential implementation of ECC and the standard elliptic curve(EC)form cannot achieve required performance level.Moreover,the widely used Hardware implementation of ECC is costly option and may be not affordable.This research aims to develop a high-performance parallel software implementation for ECC.To achieve this,many experiments were performed to examine several factors affecting ECC performance including the projective coordinates,the scalar multiplication algorithm,the elliptic curve(EC)form,and the parallel implementation.The ECC performance was analyzed using the different factors to tune-up them and select the best choices to increase the speed of the cryptosystem.Experimental results illustrated that parallel Montgomery ECC implementation using homogenous projection achieves the highest performance level,since it scored the shortest time delay for ECC computations.In addition,results showed thatNAF algorithm consumes less time to perform encryption and scalar multiplication operations in comparison withMontgomery ladder and binarymethods.Java multi-threading technique was adopted to implement ECC computations in parallel.The proposed multithreaded Montgomery ECC implementation significantly improves the performance level compared to previously presented parallel and sequential implementations.展开更多
Proxy signature is a special digital signature which enables a proxy signer to sign messages on behalf of the original signer. This paper proposes a strongly secure proxy signature scheme and a secure multi-proxy sign...Proxy signature is a special digital signature which enables a proxy signer to sign messages on behalf of the original signer. This paper proposes a strongly secure proxy signature scheme and a secure multi-proxy signature scheme based on elliptic curve cryptosystem. Contrast with universal proxy signature schemes, they are secure against key substitute attack even if there is not a certificate authority in the system, and also secure against the original signer's forgery attack. Furtherlnore, based on the elliptic curve cryptosystem, they are more efficient and have smaller key size than other system. They can be used in electronics transaction and mobile agent environment.展开更多
A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multipli...A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.展开更多
In the study, the digital multi-signature scheme, constructed by theintegration of one-way hash function and identification scheme, are proposed based on the ellipticcurve cryptosystem (ECC). To the efficiency in perf...In the study, the digital multi-signature scheme, constructed by theintegration of one-way hash function and identification scheme, are proposed based on the ellipticcurve cryptosystem (ECC). To the efficiency in performance, the ECC has been generally regarded aspositive; and the security caused by the Elliptic Curve Discrete Logarithm Problem (ECDLP) is highlyalso taken highly important. The main characteristic of the proposed scheme is that the length ofthe multi-signature is fixed rather than changeable and it will not increase with the number ofgroup members.展开更多
Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and...Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and Dahab projective coordinates, in which there are 3 field multiplications and 3 field squarings less than that in the Jacobian projective tripling algorithm. Furthermore, we map P to(φε^-1(P), and compute [n](φε^-1(P) on elliptic curve Eε, which is faster than computing [n]P on E, where φε is an isomorphism. Finally we calculate (φε([n]φε^-1(P)) = [n]P. Combined with our efficient point tripling formula, this method leads scalar multiplication using double bases to achieve about 23% improvement, compared with Jacobian projective coordinates.展开更多
Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on ...Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on the arithmetical operations above the finite field.In this paper,we analyze the structure of Miller’s algorithm firstly,which is used to implement Tate pairing.Based on the characteristics that Miller’s algorithm will be improved tremendous if the order of the subgroup of elliptic curve group is low hamming prime,a new method for generating parameters for PBC is put forward,which enable it feasible that there is certain some subgroup of low hamming prime order in the elliptic curve group generated.Finally,we analyze the computation efficiency of Tate pairing using the new parameters for PBC and give the test result.It is clear that the computation of Tate pairing above the elliptic curve group generating by our method can be improved tremendously.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金The National Natural Science Foundation of China (No60403027)
文摘The short secret key characteristic of elliptic curve cryptosystem (ECC) are integrated with the ( t, n ) threshold method to create a practical threshold group signature scheme characterized by simultaneous signing. The scheme not only meets the requirements of anonymity and traceability of group signature but also can withstand Tseng and Wang's conspiracy attack. It allows the group manager to add new members and delete old members according to actual application, while the system parameters have a little change. Cryptanalysis result shows that the scheme is efficient and secure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
基金The National Natural Science Foundation ofChina(No60703031)The Natural Science Foundation of Shaanxi Province ( No2007F50)
文摘The security of wireless local area network (WI.AN) becomes a bottleneck for its further applications. At present, many standard organizations and manufacturers of WLAN try to solve this problem. However, owing to the serious secure leak in IEEES02.11 standards, it is impossible to utterly solve the problem by simply adding some remedies. Based on the analysis on the security mechanism of WLAN and the latest techniques of WI.AN security, a solution to WLAN security was presented. The solution makes preparation for the further combination of WLAN and Internet.
基金Authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding and supporting this work through Graduate Student Research Support Program.
文摘The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem is compulsory to provide necessary security services.Elliptic curve cryptosystem(ECC)has been introduced as a considerable option.However,the usual sequential implementation of ECC and the standard elliptic curve(EC)form cannot achieve required performance level.Moreover,the widely used Hardware implementation of ECC is costly option and may be not affordable.This research aims to develop a high-performance parallel software implementation for ECC.To achieve this,many experiments were performed to examine several factors affecting ECC performance including the projective coordinates,the scalar multiplication algorithm,the elliptic curve(EC)form,and the parallel implementation.The ECC performance was analyzed using the different factors to tune-up them and select the best choices to increase the speed of the cryptosystem.Experimental results illustrated that parallel Montgomery ECC implementation using homogenous projection achieves the highest performance level,since it scored the shortest time delay for ECC computations.In addition,results showed thatNAF algorithm consumes less time to perform encryption and scalar multiplication operations in comparison withMontgomery ladder and binarymethods.Java multi-threading technique was adopted to implement ECC computations in parallel.The proposed multithreaded Montgomery ECC implementation significantly improves the performance level compared to previously presented parallel and sequential implementations.
文摘Proxy signature is a special digital signature which enables a proxy signer to sign messages on behalf of the original signer. This paper proposes a strongly secure proxy signature scheme and a secure multi-proxy signature scheme based on elliptic curve cryptosystem. Contrast with universal proxy signature schemes, they are secure against key substitute attack even if there is not a certificate authority in the system, and also secure against the original signer's forgery attack. Furtherlnore, based on the elliptic curve cryptosystem, they are more efficient and have smaller key size than other system. They can be used in electronics transaction and mobile agent environment.
基金Supported by the National Natural Science Foun dation of China ( 69973034 ) and the National High TechnologyResearch and Development Program of China (2002AA141050)
文摘A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.
文摘In the study, the digital multi-signature scheme, constructed by theintegration of one-way hash function and identification scheme, are proposed based on the ellipticcurve cryptosystem (ECC). To the efficiency in performance, the ECC has been generally regarded aspositive; and the security caused by the Elliptic Curve Discrete Logarithm Problem (ECDLP) is highlyalso taken highly important. The main characteristic of the proposed scheme is that the length ofthe multi-signature is fixed rather than changeable and it will not increase with the number ofgroup members.
基金Supported by the National Natural Science Foundation of China (60573031)
文摘Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and Dahab projective coordinates, in which there are 3 field multiplications and 3 field squarings less than that in the Jacobian projective tripling algorithm. Furthermore, we map P to(φε^-1(P), and compute [n](φε^-1(P) on elliptic curve Eε, which is faster than computing [n]P on E, where φε is an isomorphism. Finally we calculate (φε([n]φε^-1(P)) = [n]P. Combined with our efficient point tripling formula, this method leads scalar multiplication using double bases to achieve about 23% improvement, compared with Jacobian projective coordinates.
基金Acknowledgments This research is supported by National Nature Science Foundation of China under Grant No. 60873107 to G.M. Dai, Nature Science Foundation CD2008438B to G.M. Dai and in Hubei under Grant No. Special Funds to Finance Operating Expenses for Basic Scientific Research of Central Colleges in China under Grant No. CUGL090241 to M.C. Wang.
文摘Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on the arithmetical operations above the finite field.In this paper,we analyze the structure of Miller’s algorithm firstly,which is used to implement Tate pairing.Based on the characteristics that Miller’s algorithm will be improved tremendous if the order of the subgroup of elliptic curve group is low hamming prime,a new method for generating parameters for PBC is put forward,which enable it feasible that there is certain some subgroup of low hamming prime order in the elliptic curve group generated.Finally,we analyze the computation efficiency of Tate pairing using the new parameters for PBC and give the test result.It is clear that the computation of Tate pairing above the elliptic curve group generating by our method can be improved tremendously.