Let Ω be a bounded domain with smooth boundary Ω in R~n. We consider the following eigenvalue problem for systems of elliptic equations under the natural growth conditions
Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved...Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved that there is no non-radial positive solution.展开更多
This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomi...This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results.展开更多
In this paper we study the existence of nontrivial solutions of a class of asymptotically linear elliptic resonant problems at higher eigenvalues with the nonlinear term which may be un- bounded by making use of the M...In this paper we study the existence of nontrivial solutions of a class of asymptotically linear elliptic resonant problems at higher eigenvalues with the nonlinear term which may be un- bounded by making use of the Morse theory for a C^2-function at both isolated critical point and infinity.展开更多
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergenc...In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.展开更多
This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint proble...This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems.展开更多
In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been f...In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.展开更多
Let F be a compact d-set in R^n with 0 〈 d ≤ n, which includes various kinds of fractals. The author establishes an embedding theorem for the Besov spaces Bpq^s(F) of Triebel and the Sobolev spaces W^1,P(F,d,μ)...Let F be a compact d-set in R^n with 0 〈 d ≤ n, which includes various kinds of fractals. The author establishes an embedding theorem for the Besov spaces Bpq^s(F) of Triebel and the Sobolev spaces W^1,P(F,d,μ) of Hajtasz when s 〉 1, 1 〈 p 〈∞ and 0 〈 q ≤ ∞. The author also gives some applications of the estimates of the entropy numbers in the estimates of the eigenvalues of some fractal pseudodifferential operators in the spaces Bpq^0(F) and Fpq^0(F).展开更多
文摘Let Ω be a bounded domain with smooth boundary Ω in R~n. We consider the following eigenvalue problem for systems of elliptic equations under the natural growth conditions
基金This work is supported by the Youth Foundation, NSFC.
文摘In this paper, we get the existence result of the nontrivial weak solution (λ, u) of the following eigenvalue problem with natural growth conditions.
基金Supported by the Youth Foundations of National Education Commuttee the Committee on Science and Technology of Henan Province
文摘Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved that there is no non-radial positive solution.
基金supported in part by China Natural National Science Foundation(91630201,U1530116,11771179)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,P.R.China+3 种基金supported in part by the National Natural Science Foundation of China(NSFC 11471031,91430216)and the U.S.National Science Foundation(DMS–1419040)supported by Science Challenge Project(No.TZ2016002)National Natural Science Foundations of China(NSFC 11771434,91330202,11371026,91430108,11771322,11626033,11601368)the National Center for Mathematics and Interdisciplinary Science,CAS.
文摘This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results.
文摘In this paper we study the existence of nontrivial solutions of a class of asymptotically linear elliptic resonant problems at higher eigenvalues with the nonlinear term which may be un- bounded by making use of the Morse theory for a C^2-function at both isolated critical point and infinity.
基金supported by National Natural Science Foundation of China(Grant Nos.11001259,11031006,11071265,11201501 and 91230110)National Basic Research Program of China(973 Project)(Grant No. 2011CB309703)+3 种基金International S&T Cooperation Program of China(Grant No. 2010DFR00700)Croucher Foundation of Hong Kong Baptist Universitythe National Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CASthe Fundamental Research Funds for the CentralUniversities(Grant No. 2012121003)
文摘In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.
基金supported by National Natural Science Foundation of China (Grant No.10761003) the Governor's Special Foundation of Guizhou Province for Outstanding Scientific Education Personnel (Grant No.[2005]155)
文摘This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems.
文摘In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.
基金The author is partially supported by NNSF(10271015) RFDP(20020027004)of China
文摘Let F be a compact d-set in R^n with 0 〈 d ≤ n, which includes various kinds of fractals. The author establishes an embedding theorem for the Besov spaces Bpq^s(F) of Triebel and the Sobolev spaces W^1,P(F,d,μ) of Hajtasz when s 〉 1, 1 〈 p 〈∞ and 0 〈 q ≤ ∞. The author also gives some applications of the estimates of the entropy numbers in the estimates of the eigenvalues of some fractal pseudodifferential operators in the spaces Bpq^0(F) and Fpq^0(F).