In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not suppl...Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not supply a priori estimate for maximum modulus of solutions. In this paper an estimate to the maximum modulus is made firstly for a special case of quasi-linear elliptic equations, i.e. the A and B satisfy the following structural conditions展开更多
Under the assumption that the growth order of the free term to satisfy the natural growth condition with respect to gradient of the generalized solutions, the maximum principle is proved for the bounded generalized so...Under the assumption that the growth order of the free term to satisfy the natural growth condition with respect to gradient of the generalized solutions, the maximum principle is proved for the bounded generalized solution of quasi_linear elliptic equations.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the ...The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the generalized solution for the Dirichlet problems are studied.展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtai...The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.展开更多
The existence and uniqueness of singular solutions decaying like r^-m(see (1.4)) of the equation △u+k∑i=1ci|x|liupi=0,x∈R^N are obtained, wheren≥3, ci 〉0, li〉-2, i=1,2,..,k, pi〉 1, i=l,2,-..,kandthe sepa...The existence and uniqueness of singular solutions decaying like r^-m(see (1.4)) of the equation △u+k∑i=1ci|x|liupi=0,x∈R^N are obtained, wheren≥3, ci 〉0, li〉-2, i=1,2,..,k, pi〉 1, i=l,2,-..,kandthe separation structure of singular solutions decaying like r^-(n-2) of eq. (0.1) are discussed. moreover, we obtain the explicit critical exponent ps (l) (see (1.9)).展开更多
In this article, we study the existence of multiple solutions for the singular semilinear elliptic equation involving critical Sobolev-Hardy exponents -△μ-μ|x|^2^-μ=α|x|^s^-|μ|^2*(s)-2u+βα(x)|u|^...In this article, we study the existence of multiple solutions for the singular semilinear elliptic equation involving critical Sobolev-Hardy exponents -△μ-μ|x|^2^-μ=α|x|^s^-|μ|^2*(s)-2u+βα(x)|u|^r-2u,x∈R^n. By means of the concentration-compactness principle and minimax methods, we obtain infinitely many solutions which tend to zero for suitable positive parameters α,β.展开更多
In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general in...In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.展开更多
This paper considers the singular perturbation of a fourth order elliptic equation when the limit equation is elliptic-parabolic. The equation involves a positive parameter, a positive real number, a Laplacian operato...This paper considers the singular perturbation of a fourth order elliptic equation when the limit equation is elliptic-parabolic. The equation involves a positive parameter, a positive real number, a Laplacian operator, and sufficient smoothness. Under appropriate condition the sufficient condition of solvability is derived, the existence of solution is proved and a uniformly valid asymptotic solution of arbitrary order is given.展开更多
The nonlinear singularly perturbed problems for elliptic equations with boundary perturbation are considered. Under suitable conditions, by using the theory of differential inequalities the asymptotic behavior of solu...The nonlinear singularly perturbed problems for elliptic equations with boundary perturbation are considered. Under suitable conditions, by using the theory of differential inequalities the asymptotic behavior of solutions for the boundary value problems is studied.展开更多
In this paper, we consider a class of singularly perturbed Dirichlet exterior problems for elliptic equations. Under the appropriate conditions we construct the formally asymptotic solution of the problem described. U...In this paper, we consider a class of singularly perturbed Dirichlet exterior problems for elliptic equations. Under the appropriate conditions we construct the formally asymptotic solution of the problem described. Using differential inequaltiy theory we prove the existence of the solution of original problem and the uniforly validity of the formal solution.展开更多
The singularly perturbed generalized boundary value problems for semi-linear elliptic equations of fourth order are considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of generalize...The singularly perturbed generalized boundary value problems for semi-linear elliptic equations of fourth order are considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of generalized solutions for the boundary value problems are studied.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive ...This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive the deflection differential equations; secondly we accurately prove that by use of the deflection differential equations or the original differential equations the same inner forces solutions are obtained; finally, we accurately prove that considering the boundary effect the meridian surface displacement u = 0 is an exact solution. In this paper we give the singular perturbation solution of the deflection differential equations. Finally we check the equilibrium condition and prove the inner forces solved by perturbation method and the outer load are fully equilibrated. It shows that perturbation solution is accurate. On the other hand, it shows again that the deflection differential equation is an exact equation.The features of the new differential equations are as follows:1. The accuracies of the new differential equations and the original differential e-quations are the same.2. The new differential equations can satisfy the boundary conditions simply.3. It is advantageous to use perturbation method with the new differential equations.4 We may obtain the deflection expression(w)and slope expression (dw/da) by using the new differential equations.The new differential equations greatly simplify the calculation of spherical shell. The notation adopted in this paper is the same as that in Ref. [1]展开更多
The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for th...The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavio...The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.展开更多
文摘In this paper we give a priori estimates for the maximum modulus of generalizedsolulions of the quasilinear elliplic equations irith anisotropic growth condition.
文摘Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not supply a priori estimate for maximum modulus of solutions. In this paper an estimate to the maximum modulus is made firstly for a special case of quasi-linear elliptic equations, i.e. the A and B satisfy the following structural conditions
文摘Under the assumption that the growth order of the free term to satisfy the natural growth condition with respect to gradient of the generalized solutions, the maximum principle is proved for the bounded generalized solution of quasi_linear elliptic equations.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
文摘The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the generalized solution for the Dirichlet problems are studied.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
文摘The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.
基金Supported by the Natural Science Foundation of China(10901126)
文摘The existence and uniqueness of singular solutions decaying like r^-m(see (1.4)) of the equation △u+k∑i=1ci|x|liupi=0,x∈R^N are obtained, wheren≥3, ci 〉0, li〉-2, i=1,2,..,k, pi〉 1, i=l,2,-..,kandthe separation structure of singular solutions decaying like r^-(n-2) of eq. (0.1) are discussed. moreover, we obtain the explicit critical exponent ps (l) (see (1.9)).
文摘In this article, we study the existence of multiple solutions for the singular semilinear elliptic equation involving critical Sobolev-Hardy exponents -△μ-μ|x|^2^-μ=α|x|^s^-|μ|^2*(s)-2u+βα(x)|u|^r-2u,x∈R^n. By means of the concentration-compactness principle and minimax methods, we obtain infinitely many solutions which tend to zero for suitable positive parameters α,β.
文摘In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.
文摘This paper considers the singular perturbation of a fourth order elliptic equation when the limit equation is elliptic-parabolic. The equation involves a positive parameter, a positive real number, a Laplacian operator, and sufficient smoothness. Under appropriate condition the sufficient condition of solvability is derived, the existence of solution is proved and a uniformly valid asymptotic solution of arbitrary order is given.
基金The NNSF(4067601610471039)of China+2 种基金the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Insitutes of Shanghai Municipal Education Commission(N.E03004)
文摘The nonlinear singularly perturbed problems for elliptic equations with boundary perturbation are considered. Under suitable conditions, by using the theory of differential inequalities the asymptotic behavior of solutions for the boundary value problems is studied.
文摘In this paper, we consider a class of singularly perturbed Dirichlet exterior problems for elliptic equations. Under the appropriate conditions we construct the formally asymptotic solution of the problem described. Using differential inequaltiy theory we prove the existence of the solution of original problem and the uniforly validity of the formal solution.
基金The Hundred People Project of Chinese Academy of Sciences.
文摘The singularly perturbed generalized boundary value problems for semi-linear elliptic equations of fourth order are considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of generalized solutions for the boundary value problems are studied.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive the deflection differential equations; secondly we accurately prove that by use of the deflection differential equations or the original differential equations the same inner forces solutions are obtained; finally, we accurately prove that considering the boundary effect the meridian surface displacement u = 0 is an exact solution. In this paper we give the singular perturbation solution of the deflection differential equations. Finally we check the equilibrium condition and prove the inner forces solved by perturbation method and the outer load are fully equilibrated. It shows that perturbation solution is accurate. On the other hand, it shows again that the deflection differential equation is an exact equation.The features of the new differential equations are as follows:1. The accuracies of the new differential equations and the original differential e-quations are the same.2. The new differential equations can satisfy the boundary conditions simply.3. It is advantageous to use perturbation method with the new differential equations.4 We may obtain the deflection expression(w)and slope expression (dw/da) by using the new differential equations.The new differential equations greatly simplify the calculation of spherical shell. The notation adopted in this paper is the same as that in Ref. [1]
文摘The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
基金Supported by the National Natural Science Foundation of China (1 0 0 71 0 4 8)
文摘The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.