The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, wher...The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.展开更多
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
This paper deals with the construction of Heun’s method of random initial value problems. Sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations pro...This paper deals with the construction of Heun’s method of random initial value problems. Sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations processes are computed in several illustrative examples.展开更多
In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent opera...In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.展开更多
In this paper,we get fixed point theorems of mixed monotone operators in much weaker condition and give some applications for nonmonotone operators and differential equations.
The present work is based on the third-order partial differential equation (PDE) of acoustics of viscoelastic solids for the quasi-equilibrium (QE) component of the average normal stress. This PDE includes the stress-...The present work is based on the third-order partial differential equation (PDE) of acoustics of viscoelastic solids for the quasi-equilibrium (QE) component of the average normal stress. This PDE includes the stress-relaxation time (SRT) for the material and is applicable at any value of the SRT. The notion of a smart deicing system (SDS) for blade shells (BSs) of a wind turbine is specified. The work considers the stress in a BS as the one caused by the operational load on the BS. The work develops key design issues of a prospective ice-detection system (IDS) able to supply an array of the heating elements of an SDS with the element-individual spatiotemporal data and procedures for identification of the material parameters of atmospheric-ice (AI) layer accreted on the outer surfaces of the BSs. Both the SDS and IDS flexibly allow for complex, curvilinear and space-time-varying shapes of BSs. The proposed IDS presumes monitoring of the QE components of the normal stresses in BSs. The IDS is supposed to include an array of pressure-sensing resistors, also known as force-sensing resistors (FSRs), and communication hardware, as well as the parameter-identification software package (PISP), which provides the identification on the basis of the aforementioned PDE and the data measured by the FSRs. The IDS does not have hardware components located outside the outer surfaces of, or implanted in, BSs. The FSR array and communication hardware are reliable, and both cost- and energy-efficient. The present work extends methods of structural-health/operational-load monitoring (SH/OL-M) with measurements of the operational-load-caused stress in closed solid shells and, if the prospective PISP is used, endows the methods with identification of material parameters of the shells. The identification algorithms that can underlie the PISP are computationally efficient and suitable for implementation in the real-time mode. The identification model and algorithms can deal with not only the single-layer systems such as the BS layer without the AI layer or two-layer systems but also multi-layer systems. The outcomes can be applied to not only BSs of wind turbines but also non-QE closed single- or multi-layer deformable solid shells of various engineering systems (e.g., the shells of driver or passenger compartments of ships, cars, busses, airplanes, and other vehicles). The proposed monitoring of the normal-stress QE component in the mentioned shells extends the methods of SH/OL-M. The topic for the nearest research is a better adjustment of the settings for the FSR-based measurement of the mentioned components and a calibration of the parameter-identification model and algorithms, as well as the resulting improvement of the PISP.展开更多
§1.IntroductionThis paper deals with linear partial differential operators with real principalsymbol.Let P(x,D)be such an operator of mth order with C~∞ coefficients definedin an open subset Ω of R^n and p_m(x,...§1.IntroductionThis paper deals with linear partial differential operators with real principalsymbol.Let P(x,D)be such an operator of mth order with C~∞ coefficients definedin an open subset Ω of R^n and p_m(x,ξ)be its principal symbol.According to thedefinition given by Duistermaat and Hmander(see[1]),P(x,D)is called ofprincipal type at x^0 ∈Ω if for any ξ∈R^n\0 satisfying p_m(x^0,ξ)=0,x=x^0 is not theprojection in Ω of the bicharacteristic strip of P(x,D)through(x^0,ξ).Under thiscondition,they proved that there exists a neighborhood U of x^0,U,such that forany real number s,展开更多
Some new oscillation criteria are established for a second order neutral partial functional differential equation.Assumptions in our theorems are less restrictive,also the proofs are simpler than those in Li and Cui [...Some new oscillation criteria are established for a second order neutral partial functional differential equation.Assumptions in our theorems are less restrictive,also the proofs are simpler than those in Li and Cui [11].We remove some assumptions that are required for the related results in the previous papers,thus our results generalize and improve many known conclusions.展开更多
This paper discusses the spectral properties and numerical simulation for the second order elliptic operators with rapidly oscillating coefficients in the domains which may contain small cavities distributed periodica...This paper discusses the spectral properties and numerical simulation for the second order elliptic operators with rapidly oscillating coefficients in the domains which may contain small cavities distributed periodically with period ε. A multiscale asymptotic analysis formula for this problem is obtained by constructing properly the boundary layer. Finally, numerical results are given, which provide a strong support for the analytical estimates.展开更多
We obtain some new Kamenev-type oscillation theorems for the second order semilinear elliptic differential equation with damping N ∑i,j=1Di[aij(x)Djy]+N∑i=1bi(x)Diy+c(x)f(y)=0 under quite general assumpt...We obtain some new Kamenev-type oscillation theorems for the second order semilinear elliptic differential equation with damping N ∑i,j=1Di[aij(x)Djy]+N∑i=1bi(x)Diy+c(x)f(y)=0 under quite general assumptions. These results are extensions of the recent results of Sun [Sun, Y. G.: New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping. J. Math. Anal. Appl., 291, 341-351 (2004)] in a natural way. In particular, we do not impose any additional conditions on the damped functions bi (x) except the continuity. Several examples are given to illustrate the main results.展开更多
By using the averaging technique, we establish some oscillation theorems for the second order damped elliptic differential equation N↑∑↓i,j=1 Di[AIY(x)Djy]+N↑∑↓i=1 bi(x)Diy+c(x)f(y)=0 which extend and...By using the averaging technique, we establish some oscillation theorems for the second order damped elliptic differential equation N↑∑↓i,j=1 Di[AIY(x)Djy]+N↑∑↓i=1 bi(x)Diy+c(x)f(y)=0 which extend and improve some known results in the literature.展开更多
By using the method developed in the paper [Georg. Inter. J. Sci. Tech., Volume 3, Issue 1 (2011), 107-129], it is obtained a representation in an explicit form of the weak solution of a linear partial differential...By using the method developed in the paper [Georg. Inter. J. Sci. Tech., Volume 3, Issue 1 (2011), 107-129], it is obtained a representation in an explicit form of the weak solution of a linear partial differential equation of the higher order in two variables with initial condition whose coefficients are real-valued simple step functions.展开更多
Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bou...Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.展开更多
Using general means, we establish several new Philos-type oscillation theorems for the second order damped elliptic differential equationΣi,j=1 N Di[aij(x)Djy]+Σi=1 N bi(x)Diy+c(x)f(y)=0under quite general...Using general means, we establish several new Philos-type oscillation theorems for the second order damped elliptic differential equationΣi,j=1 N Di[aij(x)Djy]+Σi=1 N bi(x)Diy+c(x)f(y)=0under quite general assumptions. The obtained results are extensions of the well-known oscillation results due to Kamenev, Philos, Yan for second order linear ordinary differential equations and improve recent results of Xu, Jia and Ma.展开更多
We study a strongly elliptic partial differential operator with time- varying coefficient in a parabolic diagonalizable stochastic equation driven by fractional noises. Based on the existence and uniqueness of the sol...We study a strongly elliptic partial differential operator with time- varying coefficient in a parabolic diagonalizable stochastic equation driven by fractional noises. Based on the existence and uniqueness of the solution, we then obtain a kernel estimator of time-varying coefficient and the convergence rates. An example is given to illustrate the theorem.展开更多
基金The Natural Science Foundation of Department ofEducation of Jiangsu Province (No06KJD110087)
文摘The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.
文摘This paper deals with the construction of Heun’s method of random initial value problems. Sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations processes are computed in several illustrative examples.
文摘In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.
文摘In this paper,we get fixed point theorems of mixed monotone operators in much weaker condition and give some applications for nonmonotone operators and differential equations.
文摘The present work is based on the third-order partial differential equation (PDE) of acoustics of viscoelastic solids for the quasi-equilibrium (QE) component of the average normal stress. This PDE includes the stress-relaxation time (SRT) for the material and is applicable at any value of the SRT. The notion of a smart deicing system (SDS) for blade shells (BSs) of a wind turbine is specified. The work considers the stress in a BS as the one caused by the operational load on the BS. The work develops key design issues of a prospective ice-detection system (IDS) able to supply an array of the heating elements of an SDS with the element-individual spatiotemporal data and procedures for identification of the material parameters of atmospheric-ice (AI) layer accreted on the outer surfaces of the BSs. Both the SDS and IDS flexibly allow for complex, curvilinear and space-time-varying shapes of BSs. The proposed IDS presumes monitoring of the QE components of the normal stresses in BSs. The IDS is supposed to include an array of pressure-sensing resistors, also known as force-sensing resistors (FSRs), and communication hardware, as well as the parameter-identification software package (PISP), which provides the identification on the basis of the aforementioned PDE and the data measured by the FSRs. The IDS does not have hardware components located outside the outer surfaces of, or implanted in, BSs. The FSR array and communication hardware are reliable, and both cost- and energy-efficient. The present work extends methods of structural-health/operational-load monitoring (SH/OL-M) with measurements of the operational-load-caused stress in closed solid shells and, if the prospective PISP is used, endows the methods with identification of material parameters of the shells. The identification algorithms that can underlie the PISP are computationally efficient and suitable for implementation in the real-time mode. The identification model and algorithms can deal with not only the single-layer systems such as the BS layer without the AI layer or two-layer systems but also multi-layer systems. The outcomes can be applied to not only BSs of wind turbines but also non-QE closed single- or multi-layer deformable solid shells of various engineering systems (e.g., the shells of driver or passenger compartments of ships, cars, busses, airplanes, and other vehicles). The proposed monitoring of the normal-stress QE component in the mentioned shells extends the methods of SH/OL-M. The topic for the nearest research is a better adjustment of the settings for the FSR-based measurement of the mentioned components and a calibration of the parameter-identification model and algorithms, as well as the resulting improvement of the PISP.
文摘§1.IntroductionThis paper deals with linear partial differential operators with real principalsymbol.Let P(x,D)be such an operator of mth order with C~∞ coefficients definedin an open subset Ω of R^n and p_m(x,ξ)be its principal symbol.According to thedefinition given by Duistermaat and Hmander(see[1]),P(x,D)is called ofprincipal type at x^0 ∈Ω if for any ξ∈R^n\0 satisfying p_m(x^0,ξ)=0,x=x^0 is not theprojection in Ω of the bicharacteristic strip of P(x,D)through(x^0,ξ).Under thiscondition,they proved that there exists a neighborhood U of x^0,U,such that forany real number s,
基金supported by the National Natural Science Foundation of China (10771118)the Fund of Subject for Doctor of Ministry of Education (20103705110003)the Natural Science Foundations of Shandong Province (ZR2009AM011 and ZR2009AL015)
文摘Some new oscillation criteria are established for a second order neutral partial functional differential equation.Assumptions in our theorems are less restrictive,also the proofs are simpler than those in Li and Cui [11].We remove some assumptions that are required for the related results in the previous papers,thus our results generalize and improve many known conclusions.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19801006) and Special Funds for the Major State Basic Research Projects (Grant No. G2000067102).
文摘This paper discusses the spectral properties and numerical simulation for the second order elliptic operators with rapidly oscillating coefficients in the domains which may contain small cavities distributed periodically with period ε. A multiscale asymptotic analysis formula for this problem is obtained by constructing properly the boundary layer. Finally, numerical results are given, which provide a strong support for the analytical estimates.
基金Supported by Natural Science Foundation of Guangdong Province (Grant No.8451063101000730)
文摘We obtain some new Kamenev-type oscillation theorems for the second order semilinear elliptic differential equation with damping N ∑i,j=1Di[aij(x)Djy]+N∑i=1bi(x)Diy+c(x)f(y)=0 under quite general assumptions. These results are extensions of the recent results of Sun [Sun, Y. G.: New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping. J. Math. Anal. Appl., 291, 341-351 (2004)] in a natural way. In particular, we do not impose any additional conditions on the damped functions bi (x) except the continuity. Several examples are given to illustrate the main results.
基金the NFS of China (10571064)the NSF of Guangdong Province (04010364)
文摘By using the averaging technique, we establish some oscillation theorems for the second order damped elliptic differential equation N↑∑↓i,j=1 Di[AIY(x)Djy]+N↑∑↓i=1 bi(x)Diy+c(x)f(y)=0 which extend and improve some known results in the literature.
文摘By using the method developed in the paper [Georg. Inter. J. Sci. Tech., Volume 3, Issue 1 (2011), 107-129], it is obtained a representation in an explicit form of the weak solution of a linear partial differential equation of the higher order in two variables with initial condition whose coefficients are real-valued simple step functions.
基金China State Major Key Project for Basic Researches
文摘Combining difference method and boundary integral equation method,we propose a new numerical method for solving initial-boundary value problem of second order hyperbolic partial differential equations defined on a bounded or unbounded domain in R~3 and obtain the error estimates of the approximate solution in energy norm and local maximum norm.
基金Supported by the Natural Science Foundation of Guangdong Province(No.8451063101000730).
文摘Using general means, we establish several new Philos-type oscillation theorems for the second order damped elliptic differential equationΣi,j=1 N Di[aij(x)Djy]+Σi=1 N bi(x)Diy+c(x)f(y)=0under quite general assumptions. The obtained results are extensions of the well-known oscillation results due to Kamenev, Philos, Yan for second order linear ordinary differential equations and improve recent results of Xu, Jia and Ma.
文摘We study a strongly elliptic partial differential operator with time- varying coefficient in a parabolic diagonalizable stochastic equation driven by fractional noises. Based on the existence and uniqueness of the solution, we then obtain a kernel estimator of time-varying coefficient and the convergence rates. An example is given to illustrate the theorem.