The solutions of linear system of elliptic type equations with first order isdiscussed by using the method of several complex analysis and, a series of newextended results of the solutions for the system of elliptic t...The solutions of linear system of elliptic type equations with first order isdiscussed by using the method of several complex analysis and, a series of newextended results of the solutions for the system of elliptic type are obtained.展开更多
In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this...In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this problem is found by means of the theory of generalized analutic function and the integral equation method for solving boundary value problems.展开更多
In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive...In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.展开更多
In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> ...In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>展开更多
The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak so...The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.展开更多
Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we will give the elliptic gradient estimate for positive smooth solutions to the non-homogeneous heat equation(?_t-△)u(x, t) = A(x, t)...Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we will give the elliptic gradient estimate for positive smooth solutions to the non-homogeneous heat equation(?_t-△)u(x, t) = A(x, t)when the metric evolves under the Ricci flow. As applications, we get Harnack inequalities to compare solutions at the same time.展开更多
The present work is devoted to the bending problems of prismatic shell with the thickness vanishing at infinity as an exponential function. The bending equation in the zero approximation of Vekua's hierarchical model...The present work is devoted to the bending problems of prismatic shell with the thickness vanishing at infinity as an exponential function. The bending equation in the zero approximation of Vekua's hierarchical models is considered. The problem is reduced to the Dirichlet boundary value problem for elliptic type partial differential equations on half-plane. The solution of the problem under consideration is constructed in the integral form.展开更多
In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at in...In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at infinity in a given direction. The authors also prove a priori bounds and further one-dimensional symmetry and rigidity results for semilinear fourth order elliptic equations with more general nonlinearities.展开更多
The implicit nonlinear normal mode initialization (INMI) is applied to a tropical limited area shallow water model in spherical coordinates.The boundary condition for the INMI scheme is based on the boundary formulati...The implicit nonlinear normal mode initialization (INMI) is applied to a tropical limited area shallow water model in spherical coordinates.The boundary condition for the INMI scheme is based on the boundary formulation of the model.The INMI scheme is found to be very efficient in suppressing spurious gravity wave oscillation and providing a well balanced initial data set for the model.The INMI scheme involves solving a number of elliptic type equations with varying complexity.and hence an efficient numerical technique is required for solving such equations.In order to make INMI computationally more attractive,we are employing the multigrid method for solving all the elliptic type equations in the INMI scheme.The numerical procedures for the development of such multigrid solvers are briefly described.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(Q99A14)and the Scientific Projection of SPED(03P05)
文摘The solutions of linear system of elliptic type equations with first order isdiscussed by using the method of several complex analysis and, a series of newextended results of the solutions for the system of elliptic type are obtained.
文摘In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this problem is found by means of the theory of generalized analutic function and the integral equation method for solving boundary value problems.
基金supported by Natural Science Foundation of China(11271372)Hunan Provincial Natural Science Foundation of China(12JJ2004)
文摘In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.
文摘In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>
基金partially supported by NSFC(11831003,12031012)the Institute of Modern Analysis-A Frontier Research Center of Shanghai。
文摘The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.
文摘Let M be an n-dimensional complete noncompact Riemannian manifold. In this paper, we will give the elliptic gradient estimate for positive smooth solutions to the non-homogeneous heat equation(?_t-△)u(x, t) = A(x, t)when the metric evolves under the Ricci flow. As applications, we get Harnack inequalities to compare solutions at the same time.
文摘The present work is devoted to the bending problems of prismatic shell with the thickness vanishing at infinity as an exponential function. The bending equation in the zero approximation of Vekua's hierarchical models is considered. The problem is reduced to the Dirichlet boundary value problem for elliptic type partial differential equations on half-plane. The solution of the problem under consideration is constructed in the integral form.
基金carried out in the framework of the Labex Archimède(ANR-11-LABX-0033)the A*MIDEX project(ANR-11-IDEX-0001-02)+6 种基金funded by the "Investissements d’Avenir" French Government program managed by the French National Research Agency(ANR)funding from the European Research Council under the European Union’s Seventh Framework Programme(FP/2007-2013)ERC Grant Agreement n.321186-ReaDiReaction-Diffusion Equations,Propagation and Modelling and from the ANR NONLOCAL project(ANR-14-CE25-0013)supported by INRIA-Team MEPHYSTOMIS F.4508.14(FNRS)PDR T.1110.14F(FNRS)ARC AUWB-2012-12/17-ULB1-IAPAS
文摘In this paper, the authors prove an analogue of Gibbons' conjecture for the extended fourth order Allen-Cahn equation in R^N, as well as Liouville type results for some solutions converging to the same value at infinity in a given direction. The authors also prove a priori bounds and further one-dimensional symmetry and rigidity results for semilinear fourth order elliptic equations with more general nonlinearities.
文摘The implicit nonlinear normal mode initialization (INMI) is applied to a tropical limited area shallow water model in spherical coordinates.The boundary condition for the INMI scheme is based on the boundary formulation of the model.The INMI scheme is found to be very efficient in suppressing spurious gravity wave oscillation and providing a well balanced initial data set for the model.The INMI scheme involves solving a number of elliptic type equations with varying complexity.and hence an efficient numerical technique is required for solving such equations.In order to make INMI computationally more attractive,we are employing the multigrid method for solving all the elliptic type equations in the INMI scheme.The numerical procedures for the development of such multigrid solvers are briefly described.