期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructure Transformation and Refinement Mechanism of Undercooled Cu-Ni-Co Alloy Based on Simulation of Critical Cutting Speed in Ultrasonic Machining
1
作者 HE Xiaoyu HOU Kai +2 位作者 XU Xuguang TANG Cheng ZHU Xijing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1472-1483,共12页
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o... Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality. 展开更多
关键词 rapid solidification UNDERCOOLING microstructure refinement structure ultrasonic elliptical vibration turning cutting speed finite element analysis
下载PDF
Development of Integrated Precision Vibration-Assisted Micro-Engraving System
2
作者 陈华伟 程明龙 +1 位作者 李佑杰 张德远 《Transactions of Tianjin University》 EI CAS 2011年第4期242-247,共6页
A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and... A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and PID control algorithm was established to guarantee specific precision. Apart from experimental validation of the performance of the system, various micro-V-grooves cutting experiments on aluminum alloy, ferrous material and hard cutting material were performed, in which Kistler force sensor was used to measure cutting force. Through experiments, it was clear that the vibration-assisted micro-engraving system can ensure good quality of micro-V-grooves and reduce cutting force by about 60% compared with traditional removal process without ultrasonic vibration. 展开更多
关键词 micro-structure surface micro-engraving fast tool servo ultrasonic elliptical vibration precision cutting
下载PDF
Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy 被引量:1
3
作者 Sen YIN Yan BAO +3 位作者 Yanan PAN Zhigang DONG Zhuji JIN Renke KANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期163-180,共18页
Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is deve... Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is developed to solve the precision machining problem of tungsten heavy alloy.A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed,and its design process is greatly simplified.The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes.A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus,which is verified by finite element method.The vibration unit can display different three-degree-of-freedom(3-DOF)UEVC characteristics by adjusting the corresponding position of the unit and workpiece.A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit,which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2μm.Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system,which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy. 展开更多
关键词 tungsten heavy alloy ultrasonic elliptical vibration cutting Timoshenko’s theory resonant mode of bending finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部