In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi...In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations....In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.展开更多
In this paper, the periodic solutions of the smooth and discontinuous (SD) oscillator, which is a strongly irra- tional nonlinear system are discussed for the system having a viscous damping and an external harmonic...In this paper, the periodic solutions of the smooth and discontinuous (SD) oscillator, which is a strongly irra- tional nonlinear system are discussed for the system having a viscous damping and an external harmonic excitation. A four dimensional averaging method is employed by using the complete Jacobian elliptic integrals directly to obtain the perturbed primary responses which bifurcate from both the hyperbolic saddle and the non-hyperbolic centres of the un- perturbed system. The stability of these periodic solutions is analysed by examining the four dimensional averaged equa- tion using Lyapunov method. The results presented herein this paper are valid for both smooth (e 〉 0) and discontin- uous (ce = 0) stages providing the answer to the question why the averaging theorem spectacularly fails for the case of medium strength of external forcing in the Duffing system analysed by Holmes. Numerical calculations show a good agreement with the theoretical predictions and an excellent efficiency of the analysis for this particular system, which also suggests the analysis is applicable to strongly nonlinear systems.展开更多
In this paper,some new periodic solutions of nonlinear evolution equations and corresponding travelling wave solutions are obtained by using the double function method and Jacobi elliptic functions.
In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in...In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.展开更多
In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark...In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.展开更多
In this paper,the integer N = pkq is called a <k,1>-integer,if p and q are odd primes with almost the same size and k is a positive integer. Such integers were previously proposed for various cryptographic appli...In this paper,the integer N = pkq is called a <k,1>-integer,if p and q are odd primes with almost the same size and k is a positive integer. Such integers were previously proposed for various cryptographic applications. The conditional factorization based on lattice theory for n-bit <k,1>-integersis considered,and there is an algorithm in time polynomial in n to factor these integers if the least significant 「((2k-1)n)/((3k-1)(k+1))」bits of p are given.展开更多
In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutio...In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.展开更多
In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik...In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.展开更多
The aim of this paper is to test a developed SOR R&B method using the Chebyshev accelerator algorithm to solve the Laplace equation in a cubic 3D configuration. Comparisons are made in terms of precision and computin...The aim of this paper is to test a developed SOR R&B method using the Chebyshev accelerator algorithm to solve the Laplace equation in a cubic 3D configuration. Comparisons are made in terms of precision and computing time with other elliptic equation solvers proposed in the open source LIS library. The first results, obtained by using a single core on a HPC, show that the developed SOR R&B method is efficient when the spectral radius needed for the Chebyshev acceleration is carefully pre-estimated. Preliminary results obtained with a parallelized code using the MPI library are also discussed when the calculation is distributed over one hundred cores.展开更多
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equ...Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.展开更多
A novel method is proposed to dynamically control the path following of a ground Ackerman steering robot to avoid a collision.The method consists of collision prediction module,collision avoidance module and global pa...A novel method is proposed to dynamically control the path following of a ground Ackerman steering robot to avoid a collision.The method consists of collision prediction module,collision avoidance module and global path following module.The elliptic repulsive potential field method(ER-PFM)and the enhanced vector polar histogram method(VPH+)based on the Ackerman steering model are proposed to predict the collision in a dynamic environment.The collision avoidance is realized by the proposed cost function and speed control law.The global path following process is achieved by pure pursuit.Experiments show that the robot can fulfill the dynamic path following task safely and efficiently using the proposed method.展开更多
Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trendin...Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trending meso to macroscopic folds from asymmetric to overturned ones without changing their trend. Sigmoidal en-echelon tension gashes developed during this deformation,that were oblique to bedding parallel worm burrows and bedding planes themselves. Strain analyses of deformed elliptical ooids using the Rf/Ф method constrain the internal strain patterns of the NNE-SSW structures. The principal stretching axis(S3) defined by deformed elliptical ooids is oriented N27°E at right angles to WNW-ESE shortening. The deformed elliptical ooids in sub-vertical bedding vertical planes contain ooids that plunge -70° SE due to NW-directed tectonic transport. Finite strain ratios are1.45(Rxy) parallel to bedding plane and 1.46(Ryz) for the vertical plane. From these 2D strain values, we derive an oblate strain ellipsoidal in 3D using the Flinn and Hsu/Nadai techniques. Strains calculated from deformed elliptical ooids average-18.10% parallel to bedding and-18.47% in the vertical plane.However, a balanced cross-section through the study area indicates a minimum of--28% shortening.Consequently, regional shortening was only partially accommodated by internal deformation.展开更多
In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expans...In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.展开更多
The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many ...The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many types of doubly periodic traveling wave solutions are obtained. Under limiting conditions these solutions are reduced into solitary wave solutions.展开更多
This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann con...This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.展开更多
When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And t...When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And then, based on the superposition principle, the analyt- ical solutions for stress around an elliptical hole in an infinite plate subjected to a uniform far-field stress and concentrated forces, are obtained. Tangential stress concentration will occur on the hole boundary when only far-field uniform loads are applied. When concen- trated forces are applied in the reversed directions of the uniform loads, tangential stress concentration on the hole boundary can be released significantly. In order to minimize the tangential stress concentration, we need to determine the optimum positions and values of the concentrated forces. Three different optimization methods are applied to achieve this aim. The results show that the tangential stress can be released significantly when the op- timized concentrated forces are applied.展开更多
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312.
文摘In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
文摘The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
文摘In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.
基金supported by the National Natural Science Foundation of China(11072065)
文摘In this paper, the periodic solutions of the smooth and discontinuous (SD) oscillator, which is a strongly irra- tional nonlinear system are discussed for the system having a viscous damping and an external harmonic excitation. A four dimensional averaging method is employed by using the complete Jacobian elliptic integrals directly to obtain the perturbed primary responses which bifurcate from both the hyperbolic saddle and the non-hyperbolic centres of the un- perturbed system. The stability of these periodic solutions is analysed by examining the four dimensional averaged equa- tion using Lyapunov method. The results presented herein this paper are valid for both smooth (e 〉 0) and discontin- uous (ce = 0) stages providing the answer to the question why the averaging theorem spectacularly fails for the case of medium strength of external forcing in the Duffing system analysed by Holmes. Numerical calculations show a good agreement with the theoretical predictions and an excellent efficiency of the analysis for this particular system, which also suggests the analysis is applicable to strongly nonlinear systems.
文摘In this paper,some new periodic solutions of nonlinear evolution equations and corresponding travelling wave solutions are obtained by using the double function method and Jacobi elliptic functions.
基金Supported by National Natural Science Foundation of China under Grant No. 90511009
文摘In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.
基金supported by the Key Program of Chinese Ministry of Education(Grant No.2011015)the Hundred Innovation Talents Supporting Project of Hebei Province of China(Grant No.CPRC014)
文摘In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.
基金the National Natural Science Foundation of China (No.60473021).
文摘In this paper,the integer N = pkq is called a <k,1>-integer,if p and q are odd primes with almost the same size and k is a positive integer. Such integers were previously proposed for various cryptographic applications. The conditional factorization based on lattice theory for n-bit <k,1>-integersis considered,and there is an algorithm in time polynomial in n to factor these integers if the least significant 「((2k-1)n)/((3k-1)(k+1))」bits of p are given.
基金The Scientific Research Foundation (KXJ08047) of NanJing Institute of Technology
文摘In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.
基金The Scientific Research Foundation (QKJA2010011) of Nanjing Institute of Technology
文摘In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.
基金performed using HPC resources from CALMIP(Grant 2011-[P1053])supported by the French Agence Nationale de la Recherche under Project REMOVAL ANR-12-BS09-0019-1
文摘The aim of this paper is to test a developed SOR R&B method using the Chebyshev accelerator algorithm to solve the Laplace equation in a cubic 3D configuration. Comparisons are made in terms of precision and computing time with other elliptic equation solvers proposed in the open source LIS library. The first results, obtained by using a single core on a HPC, show that the developed SOR R&B method is efficient when the spectral radius needed for the Chebyshev acceleration is carefully pre-estimated. Preliminary results obtained with a parallelized code using the MPI library are also discussed when the calculation is distributed over one hundred cores.
基金Supported by the Natural Science Foundation of Zhejiang Province (1 0 2 0 37)
文摘Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.
基金Supported by the National Natural Science Foundation of China(91420203)
文摘A novel method is proposed to dynamically control the path following of a ground Ackerman steering robot to avoid a collision.The method consists of collision prediction module,collision avoidance module and global path following module.The elliptic repulsive potential field method(ER-PFM)and the enhanced vector polar histogram method(VPH+)based on the Ackerman steering model are proposed to predict the collision in a dynamic environment.The collision avoidance is realized by the proposed cost function and speed control law.The global path following process is achieved by pure pursuit.Experiments show that the robot can fulfill the dynamic path following task safely and efficiently using the proposed method.
基金Financial support by the Department of Geology, University of Peshawar
文摘Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trending meso to macroscopic folds from asymmetric to overturned ones without changing their trend. Sigmoidal en-echelon tension gashes developed during this deformation,that were oblique to bedding parallel worm burrows and bedding planes themselves. Strain analyses of deformed elliptical ooids using the Rf/Ф method constrain the internal strain patterns of the NNE-SSW structures. The principal stretching axis(S3) defined by deformed elliptical ooids is oriented N27°E at right angles to WNW-ESE shortening. The deformed elliptical ooids in sub-vertical bedding vertical planes contain ooids that plunge -70° SE due to NW-directed tectonic transport. Finite strain ratios are1.45(Rxy) parallel to bedding plane and 1.46(Ryz) for the vertical plane. From these 2D strain values, we derive an oblate strain ellipsoidal in 3D using the Flinn and Hsu/Nadai techniques. Strains calculated from deformed elliptical ooids average-18.10% parallel to bedding and-18.47% in the vertical plane.However, a balanced cross-section through the study area indicates a minimum of--28% shortening.Consequently, regional shortening was only partially accommodated by internal deformation.
文摘In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No.10272071)
文摘The extended Jacobian elliptic function expansion method is introduced and applied to solve the coupled ZK equations and the coupled KP equations describing two weakly long nonlinear wave models in fluid system. Many types of doubly periodic traveling wave solutions are obtained. Under limiting conditions these solutions are reduced into solitary wave solutions.
文摘This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.
基金supported by the National Natural Science Foundation of China [grant numbers 11172101, 11572126]
文摘When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And then, based on the superposition principle, the analyt- ical solutions for stress around an elliptical hole in an infinite plate subjected to a uniform far-field stress and concentrated forces, are obtained. Tangential stress concentration will occur on the hole boundary when only far-field uniform loads are applied. When concen- trated forces are applied in the reversed directions of the uniform loads, tangential stress concentration on the hole boundary can be released significantly. In order to minimize the tangential stress concentration, we need to determine the optimum positions and values of the concentrated forces. Three different optimization methods are applied to achieve this aim. The results show that the tangential stress can be released significantly when the op- timized concentrated forces are applied.