Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ...Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.展开更多
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While b...The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.展开更多
This study demonstrates the feasibility and effectiveness of utilizing native soils as a resource for inocula to produce n-caproate through the chain elongation(CE)platform,offering new insights into anaerobic soil pr...This study demonstrates the feasibility and effectiveness of utilizing native soils as a resource for inocula to produce n-caproate through the chain elongation(CE)platform,offering new insights into anaerobic soil processes.The results reveal that all five of the tested soil types exhibit CE activity when supplied with high concentrations of ethanol and acetate,highlighting the suitability of soil as an ideal source for n-caproate production.Compared with anaerobic sludge and pit mud,the native soil CE system exhibited higher selectivity(60.53%),specificity(82.32%),carbon distribution(60.00%),electron transfer efficiency(165.00%),and conductivity(0.59 ms∙cm^(-1)).Kinetic analysis further confirmed the superiority of soil in terms of a shorter lag time and higher yield.A microbial community analysis indicated a positive correlation between the relative abundances of Pseudomonas,Azotobacter,and Clostridium and n-caproate production.Moreover,metagenomics analysis revealed a higher abundance of functional genes in key microbial species,providing direct insights into the pathways involved in n-caproate formation,including in situ CO_(2)utilization,ethanol oxidation,fatty acid biosynthesis(FAB),and reverse beta-oxidation(RBO).The numerous functions in FAB and RBO are primarily associated with Pseudomonas,Clostridium,Rhodococcus,Stenotrophomonas,and Geobacter,suggesting that these genera may play roles that are involved or associated with the CE process.Overall,this innovative inoculation strategy offers an efficient microbial source for n-caproate production,underscoring the importance of considering CE activity in anaerobic soil microbial ecology and holding potential for significant economic and environmental benefits through soil consortia exploration.展开更多
Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,...Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.展开更多
High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two c...High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber.展开更多
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the...In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.展开更多
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the ...Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the evolution of polymer melt conformation and entanglement under high-rate elongational flow.The identification of a master curve indicates consistent normalized linear viscoelastic behavior.Surprising findings regarding the steady-state viscosity at various elongational rates(Wi_(R)>4.7)for polymer melts with the same Z have been uncovered,challenging existing tube models.Nevertheless,the study demonstrates the potential for normalizing the steady-state elongational viscosity at high rates(Wi_(R)>4.7)by scaling with the square of the chain contour length.Additionally,the observed independence of viscosity on the elongational rate at high rates suggests that higher rates lead to a more significant alignment of polymer chains,a decrease in entanglement,and a stretching in contour length of polymer chains.Molecular-level tracking of tagged chains further supports the assumption of no entanglement under rapid elongation,emphasizing the need for further research on disentanglement in polymer melts subjected to high-rate elongational flow.These results carry significant implications for understanding and predicting the behavior of polymer melts under high-rate elongational flow conditions.展开更多
[Objective] The aim of this study was to prepare the recombination protein of rubber elongation factor and its polyclonal antibodies.[Method] The encoding gene of rubber elongation factor(REF)was amplified by RT-PCR,a...[Objective] The aim of this study was to prepare the recombination protein of rubber elongation factor and its polyclonal antibodies.[Method] The encoding gene of rubber elongation factor(REF)was amplified by RT-PCR,and cloned into the prokaryotic expression vector pDEST17 to transform into Escherichia coil BI2I-AI.The recombinant protein induced by L-Arabinose was purified by the affinity chromatography.As the immunogen,the recombination protein was used to immunize mice for preparing polyclonal antibodies,while ELISA and Western blot hybridization were used to detect the titers and specificity.[Result] The purified recombination protein of REF with high expression was used to immunize house mice for preparing polyclonal antibodies with high titer and specificity.The western blot hybridization showed that the antibody could recognize the natural REF from latex.[Conclusion] The recombination protein of REF was successfully obtained and the mouse anti REF antibody with high titer and specificity was prepared,which lays a basis for further studies on biological functions of rubber elongation factor and other membrane proteins in rubber particles.展开更多
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
Changnienia amoena Chien is a monotypic species and endemic to China, and was listed on the Chinese Red Book in 1992. The species was once abundant but has become rare and endangered in recent years because of the hab...Changnienia amoena Chien is a monotypic species and endemic to China, and was listed on the Chinese Red Book in 1992. The species was once abundant but has become rare and endangered in recent years because of the habitat fragmentation and unduly commercial collections. Previous observation showed that this species has very low and even no fruit set, and the pollinators are not observed before this report. The present observation was conducted at the Shennongjia, Hubei Province during the spring of 2002. The results showed that Bombus (Diversobombus) trifasciatus Smith, B. imitator Pittion and one species of Apis visited the flowers of the orchid, but only B. tritasciatus could carry pollinaria on its body and was the legitimate pollinators of C amoena. During 113 h of observation, only nine visitations were recorded. The bumblebees mainly appeared during 12:00-15:00 during the day. Bumblebees stayed in a flower only a few seconds and never more than ten seconds. The flowers would persist in fresh for about three weeks when they were not pollinated, but 3 or 4 d after pollinated, the pollinated flowers underwent a series of color and morphological changes including stalk elongation and ovary swelling. Therefore, stalk elongation can be considered an index of fruits set. Artificial pollination indicated that C amoena is a highly self-compatible and outcrossing species, but dependent on pollinators for fruit set. Based on the field observations, we concluded that pollination system of C amoena is deceptive. The fruit set in nature is not very low (26.98% on average) compared to other deceptive orchids, which may be related to small population sizes. The number of pollinia removal is much higher than that of fruit set, indicating that there are some degrees of pollinia wasting in C amoena.展开更多
The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was ob...The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.展开更多
The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstruc...The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.展开更多
This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer par...This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rupture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.展开更多
基金supported by the National Natural Science Foundation of China (32170367 and 32000146)the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063)the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
文摘Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
基金supported by STI 2030–Major Projects (2023ZD0407101)National Key Research and Development Program of China (2022YFD1201700)+1 种基金National Natural Science Foundation (U21A20208,32201704)Innovation Program of CAAS。
文摘The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.
基金supported by the National Natural Science Foundation of China(52000132 and 51978201)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(HC202241)the Fundamental Research Funds for the Central Universities.
文摘This study demonstrates the feasibility and effectiveness of utilizing native soils as a resource for inocula to produce n-caproate through the chain elongation(CE)platform,offering new insights into anaerobic soil processes.The results reveal that all five of the tested soil types exhibit CE activity when supplied with high concentrations of ethanol and acetate,highlighting the suitability of soil as an ideal source for n-caproate production.Compared with anaerobic sludge and pit mud,the native soil CE system exhibited higher selectivity(60.53%),specificity(82.32%),carbon distribution(60.00%),electron transfer efficiency(165.00%),and conductivity(0.59 ms∙cm^(-1)).Kinetic analysis further confirmed the superiority of soil in terms of a shorter lag time and higher yield.A microbial community analysis indicated a positive correlation between the relative abundances of Pseudomonas,Azotobacter,and Clostridium and n-caproate production.Moreover,metagenomics analysis revealed a higher abundance of functional genes in key microbial species,providing direct insights into the pathways involved in n-caproate formation,including in situ CO_(2)utilization,ethanol oxidation,fatty acid biosynthesis(FAB),and reverse beta-oxidation(RBO).The numerous functions in FAB and RBO are primarily associated with Pseudomonas,Clostridium,Rhodococcus,Stenotrophomonas,and Geobacter,suggesting that these genera may play roles that are involved or associated with the CE process.Overall,this innovative inoculation strategy offers an efficient microbial source for n-caproate production,underscoring the importance of considering CE activity in anaerobic soil microbial ecology and holding potential for significant economic and environmental benefits through soil consortia exploration.
基金supported by the National Natural Science Foundation of China(32001578)Qingdao Science&Technology Key Projects(22-1-3-1-zyyd-nsh,23-1-3-8-zyyd-nsh)+1 种基金Salt-Alkali Agriculture Industry System of Shandong Province(SDAIT-29-03)Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta(2022SZX19)。
文摘Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.
基金the China Postdoctoral Science Foundation(Grant No.2021M703530)the National Natural Science Foundation of China(Grant No.31972398).
文摘High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFE0129800)the National Natural Science Foundation of China(Grant No.42202204)。
文摘In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.
基金supported by the National Key R&D Program of China(Nos.2020YFA0713601 and 2023YFA1008800)the National Natural Science Foundation of China(Nos.22341304,22341303,22103079 and 22073092)the Cooperation Project between Jilin Province and CAS(No.2023SYHZ0003).
文摘Using molecular dynamics(MD)simulations,this study explores the fluid properties of three polymer melts with the same number of entanglements,Z,achieved by adjusting the entanglement length Ne,while investigating the evolution of polymer melt conformation and entanglement under high-rate elongational flow.The identification of a master curve indicates consistent normalized linear viscoelastic behavior.Surprising findings regarding the steady-state viscosity at various elongational rates(Wi_(R)>4.7)for polymer melts with the same Z have been uncovered,challenging existing tube models.Nevertheless,the study demonstrates the potential for normalizing the steady-state elongational viscosity at high rates(Wi_(R)>4.7)by scaling with the square of the chain contour length.Additionally,the observed independence of viscosity on the elongational rate at high rates suggests that higher rates lead to a more significant alignment of polymer chains,a decrease in entanglement,and a stretching in contour length of polymer chains.Molecular-level tracking of tagged chains further supports the assumption of no entanglement under rapid elongation,emphasizing the need for further research on disentanglement in polymer melts subjected to high-rate elongational flow.These results carry significant implications for understanding and predicting the behavior of polymer melts under high-rate elongational flow conditions.
基金Supported by the National Natural Science Foundation(30460021)the National Nonprofit Institute Research Grant of CATAS-ITBB(ITB-BZD0717)~~
文摘[Objective] The aim of this study was to prepare the recombination protein of rubber elongation factor and its polyclonal antibodies.[Method] The encoding gene of rubber elongation factor(REF)was amplified by RT-PCR,and cloned into the prokaryotic expression vector pDEST17 to transform into Escherichia coil BI2I-AI.The recombinant protein induced by L-Arabinose was purified by the affinity chromatography.As the immunogen,the recombination protein was used to immunize mice for preparing polyclonal antibodies,while ELISA and Western blot hybridization were used to detect the titers and specificity.[Result] The purified recombination protein of REF with high expression was used to immunize house mice for preparing polyclonal antibodies with high titer and specificity.The western blot hybridization showed that the antibody could recognize the natural REF from latex.[Conclusion] The recombination protein of REF was successfully obtained and the mouse anti REF antibody with high titer and specificity was prepared,which lays a basis for further studies on biological functions of rubber elongation factor and other membrane proteins in rubber particles.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
文摘Changnienia amoena Chien is a monotypic species and endemic to China, and was listed on the Chinese Red Book in 1992. The species was once abundant but has become rare and endangered in recent years because of the habitat fragmentation and unduly commercial collections. Previous observation showed that this species has very low and even no fruit set, and the pollinators are not observed before this report. The present observation was conducted at the Shennongjia, Hubei Province during the spring of 2002. The results showed that Bombus (Diversobombus) trifasciatus Smith, B. imitator Pittion and one species of Apis visited the flowers of the orchid, but only B. tritasciatus could carry pollinaria on its body and was the legitimate pollinators of C amoena. During 113 h of observation, only nine visitations were recorded. The bumblebees mainly appeared during 12:00-15:00 during the day. Bumblebees stayed in a flower only a few seconds and never more than ten seconds. The flowers would persist in fresh for about three weeks when they were not pollinated, but 3 or 4 d after pollinated, the pollinated flowers underwent a series of color and morphological changes including stalk elongation and ovary swelling. Therefore, stalk elongation can be considered an index of fruits set. Artificial pollination indicated that C amoena is a highly self-compatible and outcrossing species, but dependent on pollinators for fruit set. Based on the field observations, we concluded that pollination system of C amoena is deceptive. The fruit set in nature is not very low (26.98% on average) compared to other deceptive orchids, which may be related to small population sizes. The number of pollinia removal is much higher than that of fruit set, indicating that there are some degrees of pollinia wasting in C amoena.
基金Project (50804018) supported by the National Natural Science Foundation of ChinaProject (ZDS2010015C) supported by Key Lab of Advanced Materials in Rare and Precious and Non-ferrous Metals, Ministry of Education, KMUST, ChinaProject (2010DH025) supported by Yunnan Province Construction Plans of Scientific and Technological Conditions, China
文摘The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.
基金Projects (50935007,51205317) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (B08040) supported by Research Fund of the 111 Project
文摘The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.
文摘This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rupture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.