Squirreltail (Elymus elymoides [Raf] Swezey) can grow in cheatgrass (Bromus tectorum L.) stands, and has reduced the biomass production of cheatgrass in its immediate vicinity. A field experiment was conducted to dete...Squirreltail (Elymus elymoides [Raf] Swezey) can grow in cheatgrass (Bromus tectorum L.) stands, and has reduced the biomass production of cheatgrass in its immediate vicinity. A field experiment was conducted to determine: 1) if competition for nitrogen resources occurs between seedlings of squirreltail and seedlings of cheatgrass, under low, medium, and high nitrogen levels, and;2) if competition for nitrogen resources in the seedling stage is a mechanism that allows squirreltail to establish in cheatgrass stands. Five accessions of squirreltail were each seeded with a single accession of cheatgrass in a cultivated field near Ephraim, Utah in the fall of 1995 and again in 1996. A completely randomized strip-plot design with 3 replications was used including the 5 joint seedings as well as pure seedings of each accession of both species. Three nitrogen levels representing high, medium (control), and low were applied. The study was replicated over 2 years in different areas of the same field. Harvests of above-ground biomass of squirreltail and cheatgrass within each treatment were conducted in July of 1996 and 1997. Using biomass production as a measure of efficient nitrogen use, cheatgrass competed for and used nitrogen resources more efficiently than squirreltail when nitrogen was not limiting. All squirreltail accessions were able to compete for and use nitrogen more efficiently than cheatgrass when there was low availability of nitrogen. Some accessions of squirreltail competed for nitrogen resources more efficiently than others both in the control and at the reduced nitrogen level. White Rocks and Sublette squirreltail accessions were the best competitors with cheatgrass at the low nitrogen level reducing the cheatgrasss biomass by as much as 75% and 67% respectively. An intermediate competitor with cheatgrass was the Gunnison accession. The Washakie and Pueblo accessions were poor competitors with cheatgrass at low nitrogen levels.展开更多
文摘Squirreltail (Elymus elymoides [Raf] Swezey) can grow in cheatgrass (Bromus tectorum L.) stands, and has reduced the biomass production of cheatgrass in its immediate vicinity. A field experiment was conducted to determine: 1) if competition for nitrogen resources occurs between seedlings of squirreltail and seedlings of cheatgrass, under low, medium, and high nitrogen levels, and;2) if competition for nitrogen resources in the seedling stage is a mechanism that allows squirreltail to establish in cheatgrass stands. Five accessions of squirreltail were each seeded with a single accession of cheatgrass in a cultivated field near Ephraim, Utah in the fall of 1995 and again in 1996. A completely randomized strip-plot design with 3 replications was used including the 5 joint seedings as well as pure seedings of each accession of both species. Three nitrogen levels representing high, medium (control), and low were applied. The study was replicated over 2 years in different areas of the same field. Harvests of above-ground biomass of squirreltail and cheatgrass within each treatment were conducted in July of 1996 and 1997. Using biomass production as a measure of efficient nitrogen use, cheatgrass competed for and used nitrogen resources more efficiently than squirreltail when nitrogen was not limiting. All squirreltail accessions were able to compete for and use nitrogen more efficiently than cheatgrass when there was low availability of nitrogen. Some accessions of squirreltail competed for nitrogen resources more efficiently than others both in the control and at the reduced nitrogen level. White Rocks and Sublette squirreltail accessions were the best competitors with cheatgrass at the low nitrogen level reducing the cheatgrasss biomass by as much as 75% and 67% respectively. An intermediate competitor with cheatgrass was the Gunnison accession. The Washakie and Pueblo accessions were poor competitors with cheatgrass at low nitrogen levels.