期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
Novel method for extraction of ship target with overlaps in SAR image via EM algorithm
1
作者 CAO Rui WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期874-887,共14页
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition... The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method. 展开更多
关键词 expectation maximization(em)algorithm image processing imaging projection plane(IPP) overlapping ship tar-get synthetic aperture radar(SAR)
下载PDF
FLIGHT DELAY STATE-SPACE MODEL BASED ON GENETIC EM ALGORITHM 被引量:2
2
作者 陈海燕 王建东 徐涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期276-281,共6页
Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to thi... Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm. 展开更多
关键词 FLIGHT DELAY predictions dynamic data-driven application system genetic em algorithm
下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
3
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 em algorithm GAUSSIAN MIXTURE Model K-Nearest NEIGHBOR K-MEANS algorithm INITIALIZATION
下载PDF
Passive Loss Inference in Wireless Sensor Networks Using EM Algorithm
4
作者 Yu Yang Zhulin An +2 位作者 Yongjun Xu Xiaowei Li Canfeng Che 《Wireless Sensor Network》 2010年第7期512-519,共8页
Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In thi... Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability. 展开更多
关键词 Wireless Sensor Networks PASSIVE Measurement Network TOMOGRAPHY Data AGGREGATION em algorithm
下载PDF
Acceleration of the EM Algorithm Using the Vector Aitken Method and Its Steffensen Form 被引量:2
5
作者 Xu GUO Qiu-yue LI Wang-li XU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第1期175-182,共8页
Based on Vector Aitken (VA) method, we propose an acceleration Expectation-Maximization (EM) algorithm, VA-accelerated EM algorithm, whose convergence speed is faster than that of EM algorithm. The VA-accelerated ... Based on Vector Aitken (VA) method, we propose an acceleration Expectation-Maximization (EM) algorithm, VA-accelerated EM algorithm, whose convergence speed is faster than that of EM algorithm. The VA-accelerated EM algorithm does not use the information matrix but only uses the sequence of estimates obtained from iterations of the EM algorithm, thus it keeps the flexibility and simplicity of the EM algorithm. Considering Steffensen iterative process, we have also given the Steffensen form of the VA-accelerated EM algorithm. It can be proved that the reform process is quadratic convergence. Numerical analysis illustrate the proposed methods are efficient and faster than EM algorithm. 展开更多
关键词 em algorithm VA-accelerated em algorithm convergence rate Steffensen iterative
原文传递
Em Algorithm of the Truncated Multinormal Distribution with Linear Restriction on the Variables 被引量:1
6
作者 Bai-suo JIN Jing-jing HAN +1 位作者 Shu DING Bai-qi MIAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第1期155-162,共8页
A new expectation-maximization(EM) algorithm is proposed to estimate the parameters of the truncated multinormal distribution with linear restriction on the variables. Compared with the generalized method of moments... A new expectation-maximization(EM) algorithm is proposed to estimate the parameters of the truncated multinormal distribution with linear restriction on the variables. Compared with the generalized method of moments(GMM) estimation and the maximum likelihood estimation(MLE) for the truncated multivariate normal distribution, the EM algorithm features in fast calculation and high accuracy which are shown in the simulation results. For the real data of the national college entrance exams(NCEE), we estimate the distribution of the NCEE examinees' scores in Anhui, 2003, who were admitted to the university of science and technology of China(USTC). Based on our analysis, we have also given the ratio truncated by the NCEE admission line of USTC in Anhui, 2003. 展开更多
关键词 em algorithm truncated multinormal distribution linear restriction national college entrance exams
原文传递
基于EM-KF算法的微地震信号去噪方法
7
作者 李学贵 张帅 +2 位作者 吴钧 段含旭 王泽鹏 《吉林大学学报(信息科学版)》 CAS 2024年第2期200-209,共10页
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximizati... 针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。 展开更多
关键词 微地震 em算法 卡尔曼滤波 信噪比
下载PDF
双边定时截尾下Pareto分布的参数的极大似然估计的EM算法
8
作者 田霆 刘次华 《电子产品可靠性与环境试验》 2024年第3期52-54,共3页
给出了当寿命分布为Pareto分布时,双边定时截尾寿命试验下形状参数的极大似然估计。由于似然方程形式较复杂,无法得到参数的显式表达式。但可证明此极大似然估计是唯一存在的,并利用EM算法求出了此参数的一种估计。
关键词 PARETO分布 双边定时截尾 极大似然估计 em算法
下载PDF
Modelling the Survival of Western Honey Bee Apis mellifera and the African Stingless Bee Meliponula ferruginea Using Semiparametric Marginal Proportional Hazards Mixture Cure Model
9
作者 Patience Isiaho Daisy Salifu +1 位作者 Samuel Mwalili Henri E. Z. Tonnang 《Journal of Data Analysis and Information Processing》 2024年第1期24-39,共16页
Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent s... Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent survival times, which is not valid for honey bees, which live in nests. The study introduces a semi-parametric marginal proportional hazards mixture cure (PHMC) model with exchangeable correlation structure, using generalized estimating equations for survival data analysis. The model was tested on clustered right-censored bees survival data with a cured fraction, where two bee species were subjected to different entomopathogens to test the effect of the entomopathogens on the survival of the bee species. The Expectation-Solution algorithm is used to estimate the parameters. The study notes a weak positive association between cure statuses (ρ1=0.0007) and survival times for uncured bees (ρ2=0.0890), emphasizing their importance. The odds of being uncured for A. mellifera is higher than the odds for species M. ferruginea. The bee species, A. mellifera are more susceptible to entomopathogens icipe 7, icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semiparametric PH model generally fits the data well as compared to model that assume independent correlation structure. Thus, the semi parametric marginal proportional hazards mixture cure is parsimonious model for correlated bees survival data. 展开更多
关键词 Mixture Cure Models Clustered Survival Data Correlation Structure Cox-Snell Residuals em algorithm Expectation-Solution algorithm
下载PDF
An improved EM algorithm for remote sensing classification 被引量:5
10
作者 YANG HongLei PENG JunHuan +1 位作者 XIA BaiRu ZHANG DingXuan 《Chinese Science Bulletin》 SCIE EI CAS 2013年第9期1060-1071,共12页
The use of a general EM(expectation-maximization) algorithm in multi-spectral image classification is known to cause two problems:singularity of the variance-covariance matrix and sensitivity of randomly selected init... The use of a general EM(expectation-maximization) algorithm in multi-spectral image classification is known to cause two problems:singularity of the variance-covariance matrix and sensitivity of randomly selected initial values.The former causes computation failure;the latter produces unstable classification results.This paper proposes a modified approach to resolve these defects.First,a modification is proposed to determine reliable parameters for the EM algorithm based on a k-means algorithm with initial centers obtained from the density function of the first principal component,which avoids the selection of initial centers at random.A second modification uses the principal component transformation of the image to obtain a set of uncorrelated data.The number of principal components as the input of the EM algorithm is determined by the principal contribution rate.In this way,the modification can not only remove singularity but also weaken noise.Experimental results obtained from two sets of remote sensing images acquired by two different sensors confirm the validity of the proposed approach. 展开更多
关键词 em算法 遥感分类 K-MEANS算法 主成分变换 协方差矩阵 随机选择 多光谱图像 期望最大化
原文传递
Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance 被引量:5
11
作者 LEI Ming HAN Chong-Zhao 《自动化学报》 EI CSCD 北大核心 2006年第1期28-37,共10页
A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online.... A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently. 展开更多
关键词 最大期望值 IMM滤波器 em算法 参数估计 噪音识别
下载PDF
The restricted EM algorithm under linear inequalities in a linear model with missing data 被引量:1
12
作者 ZHENG Shurong, SHI Ningzhong & GUO Jianhua School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China Institute of Mathematics, Jilin University, Changchun 130012, China 《Science China Mathematics》 SCIE 2005年第6期819-828,共10页
This paper discusses the maximum likelihood estimate of β under linear inequalities A0β≥ a in a linear model with missing data, proposes the restricted EM algo rithm and proves the convergence.
关键词 em algorithm linear model MAXIMUM LIKELIHOOD estimate MISSING data.
原文传递
Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm 被引量:6
13
作者 Yanhui Xi Hui Peng Hong Mo 《自动化学报》 EI CSCD 北大核心 2017年第9期1636-1643,共8页
下载PDF
EM algorithm and its application to testing hypotheses
14
作者 房祥忠 陈家鼎 《Science China Mathematics》 SCIE 2003年第5期718-723,共6页
The conventional method for testing hypotheses is to find an exact or asymptotic distributionof a test statistic. But when the model is complex and the sample size is small, difficulty often arises. Thispaper aims to ... The conventional method for testing hypotheses is to find an exact or asymptotic distributionof a test statistic. But when the model is complex and the sample size is small, difficulty often arises. Thispaper aims to present a method for finding maximum probability with the help of EM algorithm. For any fixedsample size, this method can be used not only to obtain an accurate test but also to check the real level ofa test which is build by large sample theory. Especially, while doing this, one needs neither the accurate norasymptotic distribution of the test statistic. So the method is easily performed and is especially useful for small samples. 展开更多
关键词 TEST of hypotheses em algorithm MAXIMUM probability SMALL sample recursivealgorithm.
原文传递
基于NBN-EM的地铁施工事故致因分析模型研究
15
作者 申建红 刘树鹏 《铁道标准设计》 北大核心 2024年第6期171-179,共9页
地铁施工事故具有易发性且事故类型复杂多样,针对现有地铁施工事故分析方法多依赖于专家主观经验构建,且仅有较少方法对事故报告信息加以利用的问题,提出一种基于NBN-EM的地铁施工事故致因分析模型。首先,以搜集的2010—2021年间的223... 地铁施工事故具有易发性且事故类型复杂多样,针对现有地铁施工事故分析方法多依赖于专家主观经验构建,且仅有较少方法对事故报告信息加以利用的问题,提出一种基于NBN-EM的地铁施工事故致因分析模型。首先,以搜集的2010—2021年间的223起事故报告为数据来源,采用统计学方法提取及筛选风险因素,进一步归纳建立事故致因分析的指标体系;其次,采用改进的朴素贝叶斯网络构建风险因素指标与事故类型关系的图形结构,同时分层随机抽样80%的数据为训练样本,借助EM算法和Netica软件进行数据学习,确定各节点的先验概率和条件概率参数;最后,通过贝叶斯网络推理和敏感性分析得到不同类型事故的关键致因排序,不同视角下的情景分析对风险因素组合作用下的事故发生概率和风险源识别进行了确定。研究结果表明:施工工法、施工方案内容、安全隐患排查分别为三个维度上造成事故发生的最重要因素,不同类型事故的关键风险因素具有差异性,应区别预控,模型测试验证方法的有效性,平均正确率为84.55%。 展开更多
关键词 地铁 施工事故 朴素贝叶斯网络(NBN) em算法 风险因素分析
下载PDF
带有偏正态误差的众数回归模型最大似然估计的EM算法
16
作者 姜喆 王丹璐 吴刘仓 《高校应用数学学报(A辑)》 北大核心 2024年第2期141-151,共11页
经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值... 经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值和众数多元线性回归模型.在求解模型的参数估计时使用偏正态分布的分层表示构造EM算法.在M步统一给出两点步长梯度下降算法,同时也对均值模型给出显示迭代表达式.最后通过模拟分析以及实例来讨论两种回归模型的可行性. 展开更多
关键词 偏正态分布 众数回归模型 均值回归模型 高斯-马尔柯夫假设 em算法
下载PDF
基于高斯混合模型及EM算法的建筑工程数据预警治理方法 被引量:1
17
作者 张静雯 耿天宝 《科学技术创新》 2024年第8期192-195,共4页
结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方... 结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方案,使该顶管工程顺利贯通。建筑工程行业在现代社会中发挥着重要的经济和社会作用,然而,它也伴随着诸多风险和不确定性。为了有效地管理和预测这些风险,本文提出了一种基于高斯混合模型(GMM)和期望最大化(EM)算法的数据预警治理方法。该方法旨在通过对建筑工程数据的建模和分析,提前识别潜在的问题和风险,从而改善工程项目的管理和决策。 展开更多
关键词 GMM高斯混合模型 em算法 数据预警治理 正态分布曲线 后验概率
下载PDF
SOQPSK-TG信号的EM半盲载波频偏估计
18
作者 赵丹辉 王天乐 +2 位作者 史长鑫 曾妮 王泽龙 《电讯技术》 北大核心 2024年第5期754-759,共6页
针对成形偏移四相相移键控-TG(Shaped Offset Quadrature Phase Shift Keying-Telemetry Group version,SOQPSK-TG)信号在训练序列长度受限时频偏估计精度较低的问题,利用双二进制分解(Doubinary Decomposition,DBD)原理提出基于期望最... 针对成形偏移四相相移键控-TG(Shaped Offset Quadrature Phase Shift Keying-Telemetry Group version,SOQPSK-TG)信号在训练序列长度受限时频偏估计精度较低的问题,利用双二进制分解(Doubinary Decomposition,DBD)原理提出基于期望最大化(Expectation Maximization,EM)的SOQPSK半盲载波频偏(Carrier Frequency Offset,CFO)估计算法。为了确保EM算法收敛到预期性能范围,使用基于非线性四次方码元定时估计算法的非数据辅助频偏估计方法优化了EM算法初始点选择。仿真实验结果表明,该算法相比于使用训练序列进行数据辅助估计的方法,在不增加辅助数据数量的前提下能够进一步提升CFO估计的精度,并在较高信噪比下拥有接近序列总长度所对应的克拉美罗界(Cramér-Rao Bound,CRB)的优秀性能。 展开更多
关键词 SOQPSK-TG信号 载波频偏估计 em算法 双二进制分解(DBD)
下载PDF
遥感图像最大似然分类方法的EM改进算法 被引量:84
19
作者 骆剑承 王钦敏 +2 位作者 马江洪 周成虎 梁怡 《测绘学报》 EI CSCD 北大核心 2002年第3期234-239,共6页
基于参数化密度分布模型的最大似然方法 (MLC)是遥感影像分类最常用手段之一 ,与其他非参数方法 (如神经网络 )相比较 ,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点。但是由于遥感信息的统计分布具有高度... 基于参数化密度分布模型的最大似然方法 (MLC)是遥感影像分类最常用手段之一 ,与其他非参数方法 (如神经网络 )相比较 ,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点。但是由于遥感信息的统计分布具有高度的复杂性和随机性 ,当特征空间中类别的分布比较离散而导致不能服从预先假设的分布 ,或者样本的选取不具有代表性 ,往往得到的分类结果会偏离实际情况。首先介绍了用基于有限混合密度理论的期望最大(EM)算法来作为最大似然函数 (MLC)参数估计的方法———EM MLC。该模型首先假设总体混合密度分布可被分解为有限个参数化的高斯密度分布 ,然后把具有先验知识的样本与随机选取的未知样本混合在一起 ,通过EM迭代计算来估计出各密度分布的最大似然函数的参数集 ,从而一定程度上避免了参数估计可能出现的偏离。最后 ,本文提出了基于EM MLC遥感影像分类的具体实施流程和应用示范 ,并与一般最大似然方法 (MLC)得到的分类结果进行了定性和定量的综合比较 ,认为EM 展开更多
关键词 遥感图像 混合模型 em算法 最大似然 神经网络
下载PDF
一种基于EM非监督训练的自组织分词歧义解决方案 被引量:14
20
作者 王伟 钟义信 +1 位作者 孙建 杨力 《中文信息学报》 CSCD 北大核心 2001年第2期38-44,共7页
本文旨在提供一种基于非监督训练的分词歧义解决方案和一种分词算法。基于EM的思想 ,每个句子所对应的所有 (或一定范围内 )的分词结果构成训练集 ,通过这个训练集和初始的语言模型可以估计出一个新的语言模型。最终的语言模型通过多次... 本文旨在提供一种基于非监督训练的分词歧义解决方案和一种分词算法。基于EM的思想 ,每个句子所对应的所有 (或一定范围内 )的分词结果构成训练集 ,通过这个训练集和初始的语言模型可以估计出一个新的语言模型。最终的语言模型通过多次迭代而得到。通过一种基于该最终语言模型的统计分词算法 ,对于每个句子至少带有一个歧义的测试集的正确切分精度达到 85 .36 % (以句子为单位 ) 展开更多
关键词 em算法 分词歧义 非监督训练 分词语言模型 歧义消除 汉语处理 训练算法 分词算法
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部