期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Delta River Swampy Areas Earth Fill Embankments Primary Consolidation Management Issues 被引量:1
1
作者 Ampeglio Diego Garini 《Journal of Civil Engineering and Architecture》 2021年第7期370-373,共4页
It is well known that soft silty clayey and even peaty soils especially existing in Great River Deltas Swampy Areas,under important Earth Fill Embankment Construction experience huge and hardly bearable primary consol... It is well known that soft silty clayey and even peaty soils especially existing in Great River Deltas Swampy Areas,under important Earth Fill Embankment Construction experience huge and hardly bearable primary consolidations settlements along with the minor but not negligible consequent secondary consolidation effects.In order to properly manage these particular huge settlements environments,it is very important to follow up the settlements monitoring data,by a macroscopic soil volume interpretation along with some amendments namely some mathematical added variabilities of the classic Terzaghi Primary Consolidation Equation,which are examined in a companion paper recently published in this Journal.In this paper some indications are given about how to face the macroscopic soil volume primary consolidation settlements,and especially it is suggested how to interpret the misleading laboratory consolidation test values of the coefficient of consolidation.Moreover,some design alternative solutions are examined to grasp both the potential technical and economic benefits along with their consequent disadvantages.Finally,this paper underlined the primary role of the supervision engineer to get a good estimate in the settlements forecasting and his related ability to understand the meaning of anomalous monitoring data and to timely make and match the primary consolidation settlements forecasting calculation adjustments. 展开更多
关键词 Coefficient of consolidation embankment construction management primary consolidation soil permeability SETTLEMENTS vertical settlements void ratio
下载PDF
Some Classical Terzaghi Primary Consolidation Differential Equation Mathematical Added Variabilities in Order to Get Better Field Monitoring Data Match Results 被引量:1
2
作者 Ampeglio Diego Garini 《Journal of Civil Engineering and Architecture》 2021年第2期84-87,共4页
In this paper is illustrated a mathematical added variability of the classical Terzaghi primary consolidation equation(1923)considering independently as variables the Consolidation Coefficient Cv and as well the Heigh... In this paper is illustrated a mathematical added variability of the classical Terzaghi primary consolidation equation(1923)considering independently as variables the Consolidation Coefficient Cv and as well the Height Hi of the consolidating Laboratory Consolidation Test soil sample in order to finally grasp the low permeability layer time behaviour.It is easy to show that,when the Cv variation is positive,each of these two added variabilities differentiations has as maximum a factor 2 related to the laboratory evaluated coefficient of consolidation,for a certain incremental load of reference in a Laboratory Consolidation Test.At this scope,it is analysed the overall behaviour of a typical clayey material,from the mineralogical point of view,namely especially either composed by lean clay with main kaolinite mineralogical content or fat namely with Illite mineralogical content or even very dilatant namely principally constituted by Montmorillonite.The Montmorillonite variability with Cv is negative,and consequently the differentiation enhancement factor can become naught.As it is known so far,in normal conditions of a soft clay,a difference in Construction Values of the Coefficient of Consolidation is up to 23 times greater than laboratory evaluated results,and this according to the author’s experience,may be also mainly explained not starting from Laboratory Consolidation Test Data,but through a more general macroscopic behaviour of the soil underneath the newly loaded area,putting aside the case of temperature-induced changes.In conclusion,it is suggested how to model the analytical problem of the so modified Terzaghi Primary Consolidation differential equation in order to better manage the construction unknowns of the phenomenon. 展开更多
关键词 Coefficient of consolidation embankment construction primary consolidation soil permeability SETTLEMENTS vertical settlements void ratio
下载PDF
Use of fly ash with no water consumption for cold regions transportation infrastructure
3
作者 Gokhan Baykal 《Research in Cold and Arid Regions》 CSCD 2015年第5期619-625,共7页
The construction period in cold regions is very short due to problems related to excavation and use of frozen soils in embankment construction, which leads to excessive deformations upon thawing. Also, handling of com... The construction period in cold regions is very short due to problems related to excavation and use of frozen soils in embankment construction, which leads to excessive deformations upon thawing. Also, handling of compaction water is critical due to freezing temperatures. Coalburning thermal power plants are very common in cold regions to supply electricity. The inorganic part of the pulverized coal after burning produces fly ash, which is available in large volumes. Due to excavation difficulties and the poor engineering behavior of frozen soils in cold regions, the utilization of fly ash when it is readily available must be promoted. Any construction technique which utilizes alternative materials like fly ash and minimizes water consumption has a potential to extend the short construction season and even allow service and maintenance during extreme weather conditions. This paper presents two potential techniques to solve the moisture affinity of silt-sized materials like fly ash. One technique involves in-plant production of fly ash pellets using cold-bonding pelletization to manufacture aggregates of up to 40,000-~tm diameter from 15- to 60-~tm-diameter fly ash grains. Large disc pelletizers have annual production capacities of up to one million ton at a reasonable cost. The product has adequate strength for embankment construction even when no water is used and no compaction is applied. The second technique is an in situ mixing technique which uses snow instead of compaction water for fly ash. The snow is the main element in this technique to compact the embankment. Water is needed for the hydration reactions to form cementitious minerals in fly ash. The slower the hydration reaction, the greater the crystal growth of cementitious minerals. In the proposed technique, in situ snow is mixed with fly ash and is compacted on-site. The temperature increase due to the hydration reaction of fly ash upon contact with snow crystals provides water for continued long-term hydration, which results in high strength, a high void ratio, light weight, and high thermal insulation capability. The presented techniques have the potential to extend the short construction season in cold regions and will provide fill material, decreasing the need for excavation. Both techniques are well documented under laboratory conditions, the research results have been published, and the techniques are ready for field trials to assess implementability. 展开更多
关键词 cold regions embankment construction frozen soil compaction water fly ash pellets snow-compacted fly ash
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部