With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ...With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.展开更多
With the help of an extended mapping approach and a linear variable separation method,new families ofvariable separation solutions with arbitrary functions for the(3+1)-dimensional Burgers system are derived.Based ont...With the help of an extended mapping approach and a linear variable separation method,new families ofvariable separation solutions with arbitrary functions for the(3+1)-dimensional Burgers system are derived.Based onthe derived exact solutions, some novel and interesting localized coherent excitations such as embed-solitons are revealedby selecting appropriate boundary conditions and/or initial qualifications.The time evolutional properties of the novellocalized excitation are also briefly investigated.展开更多
Starting from the extended mapping approach and a linear variable separation method, we find new families of variable separation solutions with some arbitrary functions for the (3+1)-dimensionM Burgers system. Then...Starting from the extended mapping approach and a linear variable separation method, we find new families of variable separation solutions with some arbitrary functions for the (3+1)-dimensionM Burgers system. Then based on the derived exact solutions, some novel and interesting localized coherent excitations such as embedded-solitons, taper-like soliton, complex wave excitations in the periodic wave background are revealed by introducing appropriate boundary conditions and/or initial qualifications. The evolutional properties of the complex wave excitations are briefly investigated.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018)the Undergraduate Innovative Base Program of Zhejiang A & F University
文摘With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.
基金the Natural Science Foundation of Zhejiang Province under Grant Nos. Y604106 and Y606181the Foundation of New Century "151 Talent Engineering" of Zhejiang Province+1 种基金the Scientific Research Foundation of Key Discipline of Zhejiang Provincethe Natural Science Foundation of Zhejiang Lishui University under Grant No KZ06006
文摘With the help of an extended mapping approach and a linear variable separation method,new families ofvariable separation solutions with arbitrary functions for the(3+1)-dimensional Burgers system are derived.Based onthe derived exact solutions, some novel and interesting localized coherent excitations such as embed-solitons are revealedby selecting appropriate boundary conditions and/or initial qualifications.The time evolutional properties of the novellocalized excitation are also briefly investigated.
基金the Natural Science Foundation of Zhejiang Province under Grant Nos.Y604106 and Y606181the Foundation of New Century"151 Talent Engineering"of Zhejiang Provincethe Scientific Research Foundation of Key Discipline of Zhejiang Province
文摘Starting from the extended mapping approach and a linear variable separation method, we find new families of variable separation solutions with some arbitrary functions for the (3+1)-dimensionM Burgers system. Then based on the derived exact solutions, some novel and interesting localized coherent excitations such as embedded-solitons, taper-like soliton, complex wave excitations in the periodic wave background are revealed by introducing appropriate boundary conditions and/or initial qualifications. The evolutional properties of the complex wave excitations are briefly investigated.