Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust esti...Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.展开更多
Computer networks have to support an everincreasing array of applications,ranging from cloud computing in datacenters to Internet access for users.In order to meet the various demands,a large number of network devices...Computer networks have to support an everincreasing array of applications,ranging from cloud computing in datacenters to Internet access for users.In order to meet the various demands,a large number of network devices running different protocols are designed and deployed in networks.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.61890920,61890921)。
文摘Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.
文摘Computer networks have to support an everincreasing array of applications,ranging from cloud computing in datacenters to Internet access for users.In order to meet the various demands,a large number of network devices running different protocols are designed and deployed in networks.