期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chinese Sentiment Classification Using Extended Word2Vec
1
作者 张胜 张鑫 +1 位作者 程佳军 王晖 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期823-826,共4页
Sentiment analysis is now more and more important in modern natural language processing,and the sentiment classification is the one of the most popular applications.The crucial part of sentiment classification is feat... Sentiment analysis is now more and more important in modern natural language processing,and the sentiment classification is the one of the most popular applications.The crucial part of sentiment classification is feature extraction.In this paper,two methods for feature extraction,feature selection and feature embedding,are compared.Then Word2Vec is used as an embedding method.In this experiment,Chinese document is used as the corpus,and tree methods are used to get the features of a document:average word vectors,Doc2Vec and weighted average word vectors.After that,these samples are fed to three machine learning algorithms to do the classification,and support vector machine(SVM) has the best result.Finally,the parameters of random forest are analyzed. 展开更多
关键词 embedding document segmentation dimensionality suffers projection latter classify preprocessing probabilistic
下载PDF
Visual exploration of multi-dimensional data via rule-based sample embedding
2
作者 Tong Zhang Jie Li Chao Xu 《Visual Informatics》 EI 2024年第3期53-56,共4页
We propose an approach to learning sample embedding for analyzing multi-dimensional datasets.The basic idea is to extract rules from the given dataset and learn the embedding for each sample based on the rules it sati... We propose an approach to learning sample embedding for analyzing multi-dimensional datasets.The basic idea is to extract rules from the given dataset and learn the embedding for each sample based on the rules it satisfies.The approach can filter out pattern-irrelevant attributes,leading to significant visual structures of samples satisfying the same rules in the projection.In addition,analysts can understand a visual structure based on the rules that the involved samples satisfy,which improves the projection’s pattern interpretability.Our research involves two methods for achieving and applying the approach.First,we give a method to learn rule-based embedding for each sample.Second,we integrate the method into a system to achieve an analytical workflow.Cases on real-world dataset and quantitative experiment results show the usability and effectiveness of our approach. 展开更多
关键词 Tabular data Multi-dimensional exploration Embedding projection RULE Visual analytics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部