The software-based computer numerical control(CNC) system includes three types of tasks: periodic real-time tasks, aperiodic real-time tasks, and non-real-time tasks. The tasks are characterized by concurrency, hyb...The software-based computer numerical control(CNC) system includes three types of tasks: periodic real-time tasks, aperiodic real-time tasks, and non-real-time tasks. The tasks are characterized by concurrency, hybridization, and correlation, which make system implementation difficult. The conventional scheduling algorithm can not meet the demands of system implementation in the software-based CNC system completely. The uncertainty factors when running real-time tasks affect control performance by degrading manufacturing accuracy as a result of system resource and processor use restrictions. To address the technical difficulty of embedded system implementation, a novel fuzzy feedback scheduling algorithm based on output jitter of key real-time tasks for a software-based CNC system is proposed. Time characteristics, such as sampling jitter, input-output jitter, and non-schedulability are discussed, followed by quantification through simulations of the impact of time characteristics on manufacturing accuracy. On the basis of this research, the scheduler architecture is designed, and then the algorithm table is calculated. When the system resource changes, the key periodic real-time tasks meet their deadlines by means of dynamically adjusting the task period. The simulated results show that the machining precision rises by an order of magnitude for the proposed scheduler in resource-constrained software-based CNC systems. Moreover, unlike conventional feedback scheduling methods, the algorithm in this paper does not rely on the availability of task execution times and is easy to implement while incurring only a small overhead.展开更多
An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1...An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
With the development of digital information technologies,robust watermarking framework is taken into real consideration as a challenging issue in the area of image processing,due to the large applicabilities and its u...With the development of digital information technologies,robust watermarking framework is taken into real consideration as a challenging issue in the area of image processing,due to the large applicabilities and its utilities in a number of academic and real environments.There are a wide range of solutions to provide image watermarking frameworks,while each one of them is attempted to address an efficient and applicable idea.In reality,the traditional techniques do not have sufficient merit to realize an accurate application.Due to the fact that the main idea behind the approach is organized based on contourlet representation,the only state-of-the-art materials that are investigated along with an integration of the aforementioned contourlet representation in line with watermarking framework are concentrated to be able to propose the novel and skilled technique.In a word,the main process of the proposed robust watermarking framework is organized to deal with both new embedding and de-embedding processes in the area of contourlet transform to generate watermarked image and the corresponding extracted logo image with high accuracy.In fact,the motivation of the approach is that the suggested complexity can be of novelty,which consists of the contourlet representation,the embedding and the corresponding de-embedding modules and the performance monitoring including an analysis of the watermarked image as well as the extracted logo image.There is also a scrambling module that is working in association with levels-directions decomposition in contourlet embedding mechanism,while a decision maker system is designed to deal with the appropriate number of sub-bands to be embedded in the presence of a series of simulated attacks.The required performance is tangibly considered through an integration of the peak signal-to-noise ratio and the structural similarity indices that are related to watermarked image.And the bit error rate and the normal correlation are considered that are related to the extracted logo analysis,as well.Subsequently,the outcomes are fully analyzed to be competitive with respect to the potential techniques in the image colour models including hue or tint in terms of their shade,saturation or amount of gray and their brightness via value or luminance and also hue,saturation and intensity representations,as long as the performance of the whole of channels are concentrated to be presented.The performance monitoring outcomes indicate that the proposed framework is of significance to be verified.展开更多
This paper proposed an identity-based steganographic scheme, where a receiver with certain authority can recover the secret message ready for him, but cannot detect the existence of other secret messages. The proposed...This paper proposed an identity-based steganographic scheme, where a receiver with certain authority can recover the secret message ready for him, but cannot detect the existence of other secret messages. The proposed scheme created several separate covert communication channels tagged by the Fuzzy Identity-Based Encryption (FIBE) in one grayscale image. Then each channel is used to embed one secret message by using any content-aware steganographic scheme. Receivers with different attributes can extract different messages corresponded. The Experiments illustrated the feasibility of this identity-based secret message extraction. Further, the proposed scheme presents high undetectability against steganalytic attack launched by receivers without corresponded attributes.展开更多
In recent years, mobile devices have become widespread and refined, and they have offered increased convenience in human life. For these reasons, a variety of embedded systems have been designed. Therefore, improving ...In recent years, mobile devices have become widespread and refined, and they have offered increased convenience in human life. For these reasons, a variety of embedded systems have been designed. Therefore, improving methods for developing of embedded software systematically has become an important issue. Platform-based design is one example of an embedded-system design method that can reduce the design cost via improving a design’s abstraction level. However, platform-based design lacks precise definitions for platforms and design processes. This paper provides an approach that combines the aspects and platform-based design methods for developing embedded software. The approach is built on platform-based design methodology and uses the separating of concerns (SoC) concept to define the aspects and to reduce the crosscutting concerns in embedded system modeling. For aspect issues, we use the extended UML notation with aspects to describe both the static structure and the dynamic structure of the embedded system. We used an example of a digital photo frame system to demonstrate our approach.展开更多
The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is st...The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is still not known the mechanism that leads to superconductivity. The electronic structure study is used for determining key features of the SC mechanism in these materials. The calculations were performed using the modern suite of programs MOLPRO 2021. We performed quantum calculations of a cluster embedded in a background charge distribution that represents the infinite crystal. The Natural Population Analysis was used for determining the charge and spin distribution in the studied materials. As follows from our results, the possible mechanism for superconductivity corresponds to the RVB theory proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates.展开更多
基金supported by National Natural Science Foundation of China(Grant No.50875090,Grant No.50905063)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA4Z111)China Postdoctoral Science Foundation (Grant No.20090460769)
文摘The software-based computer numerical control(CNC) system includes three types of tasks: periodic real-time tasks, aperiodic real-time tasks, and non-real-time tasks. The tasks are characterized by concurrency, hybridization, and correlation, which make system implementation difficult. The conventional scheduling algorithm can not meet the demands of system implementation in the software-based CNC system completely. The uncertainty factors when running real-time tasks affect control performance by degrading manufacturing accuracy as a result of system resource and processor use restrictions. To address the technical difficulty of embedded system implementation, a novel fuzzy feedback scheduling algorithm based on output jitter of key real-time tasks for a software-based CNC system is proposed. Time characteristics, such as sampling jitter, input-output jitter, and non-schedulability are discussed, followed by quantification through simulations of the impact of time characteristics on manufacturing accuracy. On the basis of this research, the scheduler architecture is designed, and then the algorithm table is calculated. When the system resource changes, the key periodic real-time tasks meet their deadlines by means of dynamically adjusting the task period. The simulated results show that the machining precision rises by an order of magnitude for the proposed scheduler in resource-constrained software-based CNC systems. Moreover, unlike conventional feedback scheduling methods, the algorithm in this paper does not rely on the availability of task execution times and is easy to implement while incurring only a small overhead.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.
文摘With the development of digital information technologies,robust watermarking framework is taken into real consideration as a challenging issue in the area of image processing,due to the large applicabilities and its utilities in a number of academic and real environments.There are a wide range of solutions to provide image watermarking frameworks,while each one of them is attempted to address an efficient and applicable idea.In reality,the traditional techniques do not have sufficient merit to realize an accurate application.Due to the fact that the main idea behind the approach is organized based on contourlet representation,the only state-of-the-art materials that are investigated along with an integration of the aforementioned contourlet representation in line with watermarking framework are concentrated to be able to propose the novel and skilled technique.In a word,the main process of the proposed robust watermarking framework is organized to deal with both new embedding and de-embedding processes in the area of contourlet transform to generate watermarked image and the corresponding extracted logo image with high accuracy.In fact,the motivation of the approach is that the suggested complexity can be of novelty,which consists of the contourlet representation,the embedding and the corresponding de-embedding modules and the performance monitoring including an analysis of the watermarked image as well as the extracted logo image.There is also a scrambling module that is working in association with levels-directions decomposition in contourlet embedding mechanism,while a decision maker system is designed to deal with the appropriate number of sub-bands to be embedded in the presence of a series of simulated attacks.The required performance is tangibly considered through an integration of the peak signal-to-noise ratio and the structural similarity indices that are related to watermarked image.And the bit error rate and the normal correlation are considered that are related to the extracted logo analysis,as well.Subsequently,the outcomes are fully analyzed to be competitive with respect to the potential techniques in the image colour models including hue or tint in terms of their shade,saturation or amount of gray and their brightness via value or luminance and also hue,saturation and intensity representations,as long as the performance of the whole of channels are concentrated to be presented.The performance monitoring outcomes indicate that the proposed framework is of significance to be verified.
文摘This paper proposed an identity-based steganographic scheme, where a receiver with certain authority can recover the secret message ready for him, but cannot detect the existence of other secret messages. The proposed scheme created several separate covert communication channels tagged by the Fuzzy Identity-Based Encryption (FIBE) in one grayscale image. Then each channel is used to embed one secret message by using any content-aware steganographic scheme. Receivers with different attributes can extract different messages corresponded. The Experiments illustrated the feasibility of this identity-based secret message extraction. Further, the proposed scheme presents high undetectability against steganalytic attack launched by receivers without corresponded attributes.
文摘In recent years, mobile devices have become widespread and refined, and they have offered increased convenience in human life. For these reasons, a variety of embedded systems have been designed. Therefore, improving methods for developing of embedded software systematically has become an important issue. Platform-based design is one example of an embedded-system design method that can reduce the design cost via improving a design’s abstraction level. However, platform-based design lacks precise definitions for platforms and design processes. This paper provides an approach that combines the aspects and platform-based design methods for developing embedded software. The approach is built on platform-based design methodology and uses the separating of concerns (SoC) concept to define the aspects and to reduce the crosscutting concerns in embedded system modeling. For aspect issues, we use the extended UML notation with aspects to describe both the static structure and the dynamic structure of the embedded system. We used an example of a digital photo frame system to demonstrate our approach.
文摘The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is still not known the mechanism that leads to superconductivity. The electronic structure study is used for determining key features of the SC mechanism in these materials. The calculations were performed using the modern suite of programs MOLPRO 2021. We performed quantum calculations of a cluster embedded in a background charge distribution that represents the infinite crystal. The Natural Population Analysis was used for determining the charge and spin distribution in the studied materials. As follows from our results, the possible mechanism for superconductivity corresponds to the RVB theory proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates.