期刊文献+
共找到1,897篇文章
< 1 2 95 >
每页显示 20 50 100
EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems
1
作者 Zhenjiang Dong Xin Ge +2 位作者 Yuehua Huang Jiankuo Dong Jiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4021-4044,共24页
This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.W... This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.We delve into the emerging trend of machine learning on embedded devices,enabling tasks in resource-limited environ-ments.However,the widespread adoption of machine learning raises significant privacy concerns,necessitating the development of privacy-preserving techniques.One such technique,secure multi-party computation(MPC),allows collaborative computations without exposing private inputs.Despite its potential,complex protocols and communication interactions hinder performance,especially on resource-constrained devices.Efforts to enhance efficiency have been made,but scalability remains a challenge.Given the success of GPUs in deep learning,lever-aging embedded GPUs,such as those offered by NVIDIA,emerges as a promising solution.Therefore,we propose an Embedded GPU-based Secure Two-party Computation(EG-STC)framework for Artificial Intelligence(AI)systems.To the best of our knowledge,this work represents the first endeavor to fully implement machine learning model training based on secure two-party computing on the Embedded GPU platform.Our experimental results demonstrate the effectiveness of EG-STC.On an embedded GPU with a power draw of 5 W,our implementation achieved a secure two-party matrix multiplication throughput of 5881.5 kilo-operations per millisecond(kops/ms),with an energy efficiency ratio of 1176.3 kops/ms/W.Furthermore,leveraging our EG-STC framework,we achieved an overall time acceleration ratio of 5–6 times compared to solutions running on server-grade CPUs.Our solution also exhibited a reduced runtime,requiring only 60%to 70%of the runtime of previously best-known methods on the same platform.In summary,our research contributes to the advancement of secure and efficient machine learning implementations on resource-constrained embedded devices,paving the way for broader adoption of AI technologies in various applications. 展开更多
关键词 Secure two-party computation embedded GPU acceleration privacy-preserving machine learning edge computing
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
2
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
“Instruction-Category” Approach of Test Suite Construction for Oven Embedded System
3
作者 Mengqing Tanli Jiyi Xiao Ying Zhang 《Journal of Software Engineering and Applications》 2024年第9期713-730,共18页
Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instr... Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instruction-brief and instruction-category, and constructing test suite. Consequently, this approach is adopted to test oven embedded system, and detail process is deeply discussed. As a result, the factual result indicates that the “instruction-category” approach can be effectively applied in embedded system testing as a black-box method for conformity testing. 展开更多
关键词 “Instruction-Category” Approach Test Suite Construction Embedded system
下载PDF
Hybrid Scalable Researcher Recommendation System Using Azure Data Lake Analytics
4
作者 Dinesh Kalla Nathan Smith +1 位作者 Fnu Samaah Kiran Polimetla 《Journal of Data Analysis and Information Processing》 2024年第1期76-88,共13页
This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of co... This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3]. 展开更多
关键词 Azure Data Lake U-SQL Author Recommendation system Power BI Microsoft Academic Big Data Word Embedding
下载PDF
Teaching Reform and Practice of Embedded System Design Based on Outcome-Based Education
5
作者 Tao Zhang Xiangwu Deng 《Journal of Contemporary Educational Research》 2024年第3期13-18,共6页
Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditio... Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditional teaching,this paper proposes curriculum teaching reform based on the outcome-based education(OBE)concept,including determining course objectives,reforming teaching modes and methods,and improving the curriculum assessment and evaluation system.After two semesters of practice,this method not only enhances students’learning initiative but also improves teaching quality. 展开更多
关键词 Embedded system design Outcome-based education(OBE) Teaching reform
下载PDF
Logformer: Cascaded Transformer for System Log Anomaly Detection
6
作者 Feilu Hang Wei Guo +3 位作者 Hexiong Chen Linjiang Xie Chenghao Zhou Yao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期517-529,共13页
Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points.These logs are valuable for analyzing performance issues and understanding th... Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points.These logs are valuable for analyzing performance issues and understanding the status of the system.Anomaly detection plays an important role in service management and system maintenance,and guarantees the reliability and security of online systems.Logs are universal semi-structured data,which causes difficulties for traditional manual detection and pattern-matching algorithms.While some deep learning algorithms utilize neural networks to detect anomalies,these approaches have an over-reliance on manually designed features,resulting in the effectiveness of anomaly detection depending on the quality of the features.At the same time,the aforementioned methods ignore the underlying contextual information present in adjacent log entries.We propose a novel model called Logformer with two cascaded transformer-based heads to capture latent contextual information from adjacent log entries,and leverage pre-trained embeddings based on logs to improve the representation of the embedding space.The proposed model achieves comparable results on HDFS and BGL datasets in terms of metric accuracy,recall and F1-score.Moreover,the consistent rise in F1-score proves that the representation of the embedding spacewith pre-trained embeddings is closer to the semantic information of the log. 展开更多
关键词 Anomaly detection system logs semi-structured data pre-trained embedding cascaded transformer
下载PDF
Towards Sustainable Agricultural Systems:A Lightweight Deep Learning Model for Plant Disease Detection
7
作者 Sana Parez Naqqash Dilshad +1 位作者 Turki M.Alanazi Jong Weon Lee 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期515-536,共22页
A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure ... A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information.Therefore,the agricultural management system is searching for an automatic early disease detection technique.To this end,an efficient and lightweight Deep Learning(DL)-based framework(E-GreenNet)is proposed to overcome these problems and precisely classify the various diseases.In the end-to-end architecture,a MobileNetV3Smallmodel is utilized as a backbone that generates refined,discriminative,and prominent features.Moreover,the proposed model is trained over the PlantVillage(PV),Data Repository of Leaf Images(DRLI),and a new Plant Composite(PC)dataset individually,and later on test samples,its actual performance is evaluated.After extensive experimental analysis,the proposed model obtained 1.00%,0.96%and 0.99%accuracies on all three included datasets.Moreover,the proposed method achieves better inference speed when compared with other State-Of-The-Art(SOTA)approaches.In addition,a comparative analysis is conducted where the proposed strategy shows tremendous discriminative scores as compared to the various pretrained models and other Machine Learning(ML)and DL methods. 展开更多
关键词 Computer vision deep learning embedded vision agriculture monitoring classification plant disease detection Internet of Things(IoT)
下载PDF
Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm
8
作者 R.Anandha Murugan B.Sathyabama 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期353-368,共16页
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe... Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research. 展开更多
关键词 Object monitoring night vision image SSAN dataset adaptive internal linear embedding uplift linear discriminant analysis recurrent-phase level set segmentation correlation aware LSTM based yolo classifier algorithm
下载PDF
ARM-Based Embedded System Platform and Its Portability Research
9
作者 Hao Liu 《Journal of Computer and Communications》 2023年第11期51-63,共13页
Taking ARM as the hardware platform, the embedded system is built from both hardware and software aspects with the application as the center. In the hardware design, build the hardware platform scheme, design the sche... Taking ARM as the hardware platform, the embedded system is built from both hardware and software aspects with the application as the center. In the hardware design, build the hardware platform scheme, design the schematic diagram as well as PCB, complete the hardware debugging, and ensure the system hardware platform function;in the software design, optimize the three-stage pipeline structure of ARM instruction system, design the instruction set, install the embedded system on the virtual machine, build the cross-toolchain, and set up the correct NFS network file system. Finish the design of the ARM-based embedded system platform, combined with the hardware requirements of the experimental platform, transplant the powerful Uboot as the Bootloader of the system, and further transplant the Linux-2.6. 32 kernel to the system start the operation normally, and finally, build the root file to finish the study of its portability. 展开更多
关键词 Embedded Platforms PORTABILITY Operating systems
下载PDF
基于Transformer结构增强的神经网络架构搜索性能预测器
10
作者 王继禾 吴颖 +2 位作者 迟恒喆 王党辉 梅魁志 《计算机学报》 EI CAS CSCD 北大核心 2024年第7期1469-1484,共16页
神经网络架构搜索(Neural Architecture Search,NAS)作为一种通过搜索算法设计神经网络架构的方法,在计算机视觉和自然语言处理等领域得到广泛应用,相较于人工设计网络,NAS方法可以减少设计成本并提高模型性能.但是NAS的性能评估需要对... 神经网络架构搜索(Neural Architecture Search,NAS)作为一种通过搜索算法设计神经网络架构的方法,在计算机视觉和自然语言处理等领域得到广泛应用,相较于人工设计网络,NAS方法可以减少设计成本并提高模型性能.但是NAS的性能评估需要对候选架构进行大量训练,由此带来的计算量占整个NAS的80%以上.为降低计算开销和时间成本,近年来已提出许多基于Transformer的NAS预测器,由于Transformer出色的结构编码能力可以更好地表示拓扑信息,因而得到广泛应用.但是,现有基于Transformer的NAS预测器依然存在三个问题:其一是在预处理阶段,传统的One-hot编码方式描述节点特征的能力较弱,只能区分不同操作节点类型,而难以表达操作的细节特征,如卷积核尺寸等.其二是在编码阶段,Transformer的自注意力机制导致模型结构信息缺失;其三是在评估阶段,现有的Transformer预测器仅使用多层感知机(Multilayer Perceptron,MLP)对前向传播图进行精度预测,忽略了反向传播梯度流对预测精度的影响,因此难以真正拟合NAS评估中的正、反向交替信息流图,导致预测器精度与实际运行精度误差波动极大(10%~90%).为解决上述问题,本文提出了一种基于Transformer结构增强的NAS性能预测方法.首先,在预处理阶段,本文提出了一种超维嵌入方法增加输入数据维度以强化节点操作的参数描述能力,其次,在编码阶段将Transformer编码后的信息与图结构信息共同输人一个图卷积网络(Graph Convolutional Network,GCN),弥补由自注意力机制引起的结构缺失.最后,在性能评估阶段,本文构建了同时包含前向传播和反向传播的全训练图,并将数据集信息、图结构编码与梯度编码共同输入到GCN网络预测器中,使预测结果更贴近模型真实性能.实验结果表明,本方法与目前最先进方法相比,肯德尔相关系数提高了7.45%,训练时间减少了1.55倍。 展开更多
关键词 预测器 NAS TRANSFORMER GCN EMBEDDING
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
11
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Embedded Data Acquisition in Vehicle Electronic System 被引量:3
12
作者 王建群 陈铁 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期403-407,共5页
The embedded data acquistition technology in vehicle electronic system was discussed. This technology adopts the parallel working mode, gets vehicle electronic system data by communication. This technology can provide... The embedded data acquistition technology in vehicle electronic system was discussed. This technology adopts the parallel working mode, gets vehicle electronic system data by communication. This technology can provide us a lot of information on the electronic control unit, is very useful for the development of the vehicle electronic system, and can be used in diagnosis. The key points to this technology are the timer interrupt, A/D interrupt, communication interrupt and real time operation. This technology has been validated by the application in the electronic control mechanism transmission shifting system of the tank. 展开更多
关键词 embedded data acquisition INTERRUPT COMMUNICATION VEHICLE
下载PDF
嵌入式Linux中基于Qt/Embeded触摸屏驱动的设计 被引量:7
13
作者 申伟杰 彭楚武 胡辉红 《中国仪器仪表》 2006年第4期48-51,共4页
本文主要介绍了在嵌入式Linux系统下基于Qt/Embeded的触摸屏驱动的设计,通过对Linux设备驱动和Qt/Embedded设备驱动接口的工作原理和机制介绍,并结合大量源代码进行分析,提出了基于Qt/Embeded的触摸屏驱动的开发方案。
关键词 嵌入式系统 LINUX QT/EMBEDDED 触摸屏 设备驱动
下载PDF
A Linked List Encryption Scheme for Image Steganography without Embedding
14
作者 Pengbiao Zhao Qi Zhong +3 位作者 Jingxue Chen Xiaopei Wang Zhen Qin Erqiang Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期331-352,共22页
Information steganography has received more and more attention from scholars nowadays,especially in the area of image steganography,which uses image content to transmit information and makes the existence of secret in... Information steganography has received more and more attention from scholars nowadays,especially in the area of image steganography,which uses image content to transmit information and makes the existence of secret information undetectable.To enhance concealment and security,the Steganography without Embedding(SWE)method has proven effective in avoiding image distortion resulting from cover modification.In this paper,a novel encrypted communication scheme for image SWE is proposed.It reconstructs the image into a multi-linked list structure consisting of numerous nodes,where each pixel is transformed into a single node with data and pointer domains.By employing a special addressing algorithm,the optimal linked list corresponding to the secret information can be identified.The receiver can restore the secretmessage fromthe received image using only the list header position information.The scheme is based on the concept of coverless steganography,eliminating the need for any modifications to the cover image.It boasts high concealment and security,along with a complete message restoration rate,making it resistant to steganalysis.Furthermore,this paper proposes linked-list construction schemeswithin theproposedframework,which caneffectively resist a variety of attacks,includingnoise attacks and image compression,demonstrating a certain degree of robustness.To validate the proposed framework,practical tests and comparisons are conducted using multiple datasets.The results affirm the framework’s commendable performance in terms of message reduction rate,hidden writing capacity,and robustness against diverse attacks. 展开更多
关键词 STEGANOGRAPHY ENCRYPTION steganography without embedding coverless steganography
下载PDF
Intelligent casting:Empowering the future foundry industry
15
作者 Jin-wu Kang Bao-lin Liu +1 位作者 Tao Jing Hou-fa Shen 《China Foundry》 SCIE EI CAS CSCD 2024年第5期409-426,共18页
Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which... Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored. 展开更多
关键词 intelligent casting 3D printing intelligent mold process control cyber-physical casting system embedded simulation
下载PDF
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
16
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Randomization Strategies in Image Steganography Techniques:A Review
17
作者 AFM Zainul Abadin Rossilawati Sulaiman Mohammad Kamrul Hasan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3139-3171,共33页
Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into ... Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography. 展开更多
关键词 Information hiding image steganography randomized embedding techniques payload capacity IMPERCEPTIBILITY
下载PDF
CO_(2)flooding in shale oil reservoir with radial borehole fracturing for CO_(2)storage and enhanced oil recovery
18
作者 Jia-Cheng Dai Tian-Yu Wang +3 位作者 Jin-Tao Weng Kang-Jian Tian Li-Ying Zhu Gen-Sheng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期519-534,共16页
This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume i... This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction. 展开更多
关键词 Shale oil Radial borehole fracturing Embedded discrete fracture model Enhanced oil recovery Carbon storage
下载PDF
Advancements in machine learning for material design and process optimization in the field of additive manufacturing
19
作者 Hao-ran Zhou Hao Yang +8 位作者 Huai-qian Li Ying-chun Ma Sen Yu Jian shi Jing-chang Cheng Peng Gao Bo Yu Zhi-quan Miao Yan-peng Wei 《China Foundry》 SCIE EI CAS CSCD 2024年第2期101-115,共15页
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co... Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing. 展开更多
关键词 additive manufacturing machine learning material design process optimization intersection of disciplines embedded machine learning
下载PDF
Advances of embedded resistive random access memory in industrial manufacturing and its potential applications
20
作者 Zijian Wang Yixian Song +7 位作者 Guobin Zhang Qi Luo Kai Xu Dawei Gao Bin Yu Desmond Loke Shuai Zhong Yishu Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期175-214,共40页
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en... Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence. 展开更多
关键词 embedded resistive random access memory industrial manufacturing intelligent computing advanced process node
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部