A manganese superoxide dismutase (Mn-SOD) gene, NnMSD1, was identified from embryonic axes of the sacred lotus (Nelumbo nucifera Gaertn.). The NnMSD1 protein contains all conserved residues of the Mn-SOD protein f...A manganese superoxide dismutase (Mn-SOD) gene, NnMSD1, was identified from embryonic axes of the sacred lotus (Nelumbo nucifera Gaertn.). The NnMSD1 protein contains all conserved residues of the Mn-SOD protein family, including four consensus metal binding domains and a signal peptide for mitochondrial targeting. Southern blot analysis suggests the existence of two Mn.SOD genes in sacred lotus. NnMSD1 was highly expressed in developing embryonic axes during seed development, but appeared in cotyledons only at the early stage of development and became undetectable in the cotyledons during late embryogenesis. The expression of the NnMSD1 gene in germinating embryonic axes, in response to various stresses such as heat shock, chilling, and exposure to stress-related chemicals, was also studied. Heat shock strongly inhibited the expression of the NnMSD1 gene, whereas the NnMSD1 transcript level increased strongly in chilling stress treatment. An increase in expression was also highly induced by H2O2 in germinating embryonic axes. The results suggest that the expression pattern of the NnMSD1 gene differed between developing axes and cotyledons, and that the NnMSD1 gene expression responds strongly to chilling and oxidative stress.展开更多
Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water conten...Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100℃ and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100℃. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.展开更多
基金Supported by the National Natural Science Foundation of China (30370912)the Natural Science Foundation of Guangdong Province (04009773 and 2006B20101010).
文摘A manganese superoxide dismutase (Mn-SOD) gene, NnMSD1, was identified from embryonic axes of the sacred lotus (Nelumbo nucifera Gaertn.). The NnMSD1 protein contains all conserved residues of the Mn-SOD protein family, including four consensus metal binding domains and a signal peptide for mitochondrial targeting. Southern blot analysis suggests the existence of two Mn.SOD genes in sacred lotus. NnMSD1 was highly expressed in developing embryonic axes during seed development, but appeared in cotyledons only at the early stage of development and became undetectable in the cotyledons during late embryogenesis. The expression of the NnMSD1 gene in germinating embryonic axes, in response to various stresses such as heat shock, chilling, and exposure to stress-related chemicals, was also studied. Heat shock strongly inhibited the expression of the NnMSD1 gene, whereas the NnMSD1 transcript level increased strongly in chilling stress treatment. An increase in expression was also highly induced by H2O2 in germinating embryonic axes. The results suggest that the expression pattern of the NnMSD1 gene differed between developing axes and cotyledons, and that the NnMSD1 gene expression responds strongly to chilling and oxidative stress.
基金the Knowledge Innovation Program(KIP)Pilot Project(Grant No.KZCX2-YW-414)the Botanical Garden and Systematic Biology Project of the Chinese Academy of Sciences(Grant No.KSCX2-YW-Z-058)
文摘Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100℃ and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100℃. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.