Determining the optimal vehicle routing of emergency material distribution(VREMD)is one of the core issues of emergency management,which is strategically important to improve the effectiveness of emergency response an...Determining the optimal vehicle routing of emergency material distribution(VREMD)is one of the core issues of emergency management,which is strategically important to improve the effectiveness of emergency response and thus reduce the negative impact of large-scale emergency events.To summarize the latest research progress,we collected 511VREMD-related articles published from 2010 to the present from the Scopus database and conducted a bibliometric analysis using VOSviewer software.Subsequently,we cautiously selected 49 articles from these publications for system review;sorted out the latest research progress in model construction and solution algorithms;and summarized the evolution trend of keywords,research gaps,and future works.The results show that domestic scholars and research organizations held an unqualified advantage regarding the number of published papers.However,these organizations with the most publications performed poorly regarding the number of literature citations.China and the US have contributed the vast majority of the literature,and there are close collaborations between researchers from both countries.The optimization model of VREMD can be divided into single-,multi-,and joint-objective models.The shortest travel time is the most common optimization objective in the single-objective optimization model.Several scholars focus on multiobjective optimization models to consider conflicting objectives simultaneously.In recent literature,scholars have focused on the impact of uncertainty and special events(e.g.,COVID-19)on VREMD.Moreover,some scholars focus on joint optimization models to optimize vehicle routes and central locations(or material allocation)simultaneously.Solution algorithms can be divided into two primary categories,i.e.,mathematical planning methods and intelligent evolutionary algorithms.The branch and bound algorithm is the most dominant mathematical planning algorithm,while genetic algorithms and their enhancements are the most commonly used intelligent evolutionary algorithms.It is shown that the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ)can effectively solve the multiobjective model of VREMD.To further improve the algorithm’s performance,researchers have proposed improved hybrid intelligent algorithms that combine the advantages of NSGA-Ⅱand certain other algorithms.Scholars have also proposed a series of optimization algorithms for specific scenarios.With the development of new technologies and computation methods,it will be exciting to construct optimization models that consider uncertainty,heterogeneity,and temporality for large-scale real-world issues and develop generalized solution approaches rather than those applicable to specific scenarios.展开更多
Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, bec...Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natural ores. This study summarizes the distribution characteristics of various RPMs in urban mines, and the advantages and shortcomings of various technologies for RPM recovery from urban mines, including both conventional (pyrometallurgical, hydrometallurgical, and biometallurgical processing), and emerging (electrochemical, supereritieal fluid, mechanochemical, and ionic liquids processing) technologies. Mechanical/physical technologies are commonly employed to separate RPMs from nonmetallic components in a pre-treatment process. A pyrometallurgical process is often used tbr RPM recovery, although the expensive equipment required has limited its use in small and medium-sized enterprises. Hydrometallurgical processing is effective and easy to operate, with high selectivity of target metals and high recovery efficiency of RPMs, compared to pyrometallurgy. Biometallurgy, though, has shown the most promise for leaching RPMs from urban mines, because of its low cost and environmental friendliness. Newly developed technologies electrochemical, supercritical fluid, ionic liquid, and mechanochemical have offered new choices and achieved some success in laboratory experiments, especially as efficient and environmentally friendly methods of recycling RPMs. With continuing advances in science and technology, more technologies will no doubt be developed in this field, and be able to contribute to the sustainability of RPM mining.展开更多
基金the National Natural Science Foundation of China(51808187,52062027)the Fundamental Research Funds for the Central Universities(B210202035)+2 种基金the"Double-First Class"Major Research Programs,Educational Department of Gansu Province(GSSYLXM-04)the Soft Science Special Project of Gansu Basic Research PIan(22JR4ZA035)the Gansu Provincial Science and Technology Major Special Project-Enterprise Innovation Consortium Project(22ZD6GA010)。
文摘Determining the optimal vehicle routing of emergency material distribution(VREMD)is one of the core issues of emergency management,which is strategically important to improve the effectiveness of emergency response and thus reduce the negative impact of large-scale emergency events.To summarize the latest research progress,we collected 511VREMD-related articles published from 2010 to the present from the Scopus database and conducted a bibliometric analysis using VOSviewer software.Subsequently,we cautiously selected 49 articles from these publications for system review;sorted out the latest research progress in model construction and solution algorithms;and summarized the evolution trend of keywords,research gaps,and future works.The results show that domestic scholars and research organizations held an unqualified advantage regarding the number of published papers.However,these organizations with the most publications performed poorly regarding the number of literature citations.China and the US have contributed the vast majority of the literature,and there are close collaborations between researchers from both countries.The optimization model of VREMD can be divided into single-,multi-,and joint-objective models.The shortest travel time is the most common optimization objective in the single-objective optimization model.Several scholars focus on multiobjective optimization models to consider conflicting objectives simultaneously.In recent literature,scholars have focused on the impact of uncertainty and special events(e.g.,COVID-19)on VREMD.Moreover,some scholars focus on joint optimization models to optimize vehicle routes and central locations(or material allocation)simultaneously.Solution algorithms can be divided into two primary categories,i.e.,mathematical planning methods and intelligent evolutionary algorithms.The branch and bound algorithm is the most dominant mathematical planning algorithm,while genetic algorithms and their enhancements are the most commonly used intelligent evolutionary algorithms.It is shown that the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ)can effectively solve the multiobjective model of VREMD.To further improve the algorithm’s performance,researchers have proposed improved hybrid intelligent algorithms that combine the advantages of NSGA-Ⅱand certain other algorithms.Scholars have also proposed a series of optimization algorithms for specific scenarios.With the development of new technologies and computation methods,it will be exciting to construct optimization models that consider uncertainty,heterogeneity,and temporality for large-scale real-world issues and develop generalized solution approaches rather than those applicable to specific scenarios.
文摘Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natural ores. This study summarizes the distribution characteristics of various RPMs in urban mines, and the advantages and shortcomings of various technologies for RPM recovery from urban mines, including both conventional (pyrometallurgical, hydrometallurgical, and biometallurgical processing), and emerging (electrochemical, supereritieal fluid, mechanochemical, and ionic liquids processing) technologies. Mechanical/physical technologies are commonly employed to separate RPMs from nonmetallic components in a pre-treatment process. A pyrometallurgical process is often used tbr RPM recovery, although the expensive equipment required has limited its use in small and medium-sized enterprises. Hydrometallurgical processing is effective and easy to operate, with high selectivity of target metals and high recovery efficiency of RPMs, compared to pyrometallurgy. Biometallurgy, though, has shown the most promise for leaching RPMs from urban mines, because of its low cost and environmental friendliness. Newly developed technologies electrochemical, supercritical fluid, ionic liquid, and mechanochemical have offered new choices and achieved some success in laboratory experiments, especially as efficient and environmentally friendly methods of recycling RPMs. With continuing advances in science and technology, more technologies will no doubt be developed in this field, and be able to contribute to the sustainability of RPM mining.