The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the...The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the coupling efficiency between two-dimensional(2D)plasmons and THz radiation.In this work,we investigate the plasma oscillation,electromagnetic radiation,and the integration characteristics of Ga N HEMT targeting at a high THz radiation power source.The quantitative radiation power and directivity are obtained for integrated Ga N HEMT array with different array periods and element numbers.With the same initial plasma oscillation phase among the HEMT units,the radiation power of the two-element HEMT array can achieve 4 times as the single HEMT radiation power when the array period is shorter than 1/8electromagnetic wavelength.In addition,the radiation power of the HEMT array varies almost linearly with the element number,the smaller array period can lead to the greater radiation power.It shows that increasing the array period could narrow the main radiated lobe width while weaken the radiation power.Increasing the element number can improve both the radiation directivity and power.We also synchronize the plasma wave phases in the HEMT array by adopting an external Gaussian plane wave with central frequency the same as the plasmon resonant frequency,which solves the problem of the radiation power reduction caused by the asynchronous plasma oscillation phases among the elements.The study of the radiation power amplification of the one-dimensional(1D)Ga N HEMT array provides useful guidance for the research of compact high-power solid-state terahertz sources.展开更多
As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recen...As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recent years.Here in this review,we summarized the recent research progress in the preparation methods of 2D polymer nanosheets,mainly including interfacial polymerization and solution polymerization.We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications,such as batteries,supercapacitors,electrocatalysis and photocatalysis.Finally,on the basis of their current development,we put forward the existing challenges and some personal perspectives.展开更多
With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionalit...With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionality of the materials.In the three dimensional case,there is a potential barrier for self-trapping,whereas no such barrier is present for quasi-one-dimensional systems.Two-dimensional(2D)systems are marginal cases with a much lower potential barrier or nonex istent potential barrier for the self-trapping,leading to the easier formation of self-trapped states.Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap.2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic.In particular,self-trapped excitons are present in 2D per-ovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction.Here,we summarized the luminescence characteristics,origins,and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.展开更多
Monomers with low symmetries can form different topological structures in the preparation of organic two-dimensional(2D)materials.However,it remains challenging to modulate the topologies in practical synthesis.Levera...Monomers with low symmetries can form different topological structures in the preparation of organic two-dimensional(2D)materials.However,it remains challenging to modulate the topologies in practical synthesis.Leveraging theoretical insights into the formation energy of potential structural configurations,we report the topology modulation of a graphdiyne(GDY)derivative constructed from two-fold symmetric tetrakis(4-ethynylphenyl)ethene precursor by changing solvent combinations in a liquid-liquid interfacial system.An aqueous-organic(water-dichloromethane)interface afforded GDY with a kagome topology while a rhombic topology was formed at an organic-organic(hexane-acetonitrile)interface.A comprehensive evaluation of their structures and optoelectronic properties was conducted through various characterization techniques and theoretical computations.Our study provided new insights to modulate the topology of not only GDY but also other framework structures and obtain topologically pure materials in situations where different topologies are possible during practical synthesis.展开更多
A monolayer of Sr2Nb3Oio(SNO)is deposited on the Pt/Ti/SiCWSi(Pt?Si)or Pt/Ti/polyimide(Pt-Pl)substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline(Nai_xKx)NbO3(NK...A monolayer of Sr2Nb3Oio(SNO)is deposited on the Pt/Ti/SiCWSi(Pt?Si)or Pt/Ti/polyimide(Pt-Pl)substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline(Nai_xKx)NbO3(NKN)film at 350℃.The crystalline NKN film is grown along the[001]direction on the SNO/Pt-Si(or SNO/Pt-PI)substrate.Due to the presence of oxygen vacancies in the SNO seed-layer,the NKN film exhibits low ferroelectric properties and large leakage current.To ameliorate these properties,the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300℃,which removes the oxygen vacancies.Consequently,the NKN film deposited on this substrate exhibits promising electrical properties,namely a dielectric constant of 278,dissipation factor of 1.7%,a piezoelectric 8nstant of 175 pm`V^-1,and a leakage current density of 6.47 x 10^-7 A cm^-2 at-0.2 MV crrT1.Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350°C.Hence,the NKN films grown on the SNO seed-layer at 350°C can be applied to electronic devices with flexible polymer substrates.展开更多
Two-dimensional (2D) materials and ultrathin nanosheets have attracted tremendous research interests [1-4]. Exfoliation of porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) with 2D coordination st...Two-dimensional (2D) materials and ultrathin nanosheets have attracted tremendous research interests [1-4]. Exfoliation of porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) with 2D coordination structures is emerging as a viable strategy for preparation of new types of 2D materials [5-8]. The relatively weak bonding within and strong interactions between 2D coordination networks are the main problems for successful exfoliation [9]. Pretreatments of the layered MOFs to expand the interlayer distances can be helpful [10-12]. Capturing the exfoliation intermediates and visualizing their structures are valuable for understanding the exfoliation mechanism and confirming the structures of the final 2D materials [11,12].展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92163204,61921002,and 62171098)。
文摘The Ga N high electron mobility transistor(HEMT)has been considered as a potential terahertz(THz)radiation source,yet the low radiation power level restricts their applications.The HEMT array is thought to improve the coupling efficiency between two-dimensional(2D)plasmons and THz radiation.In this work,we investigate the plasma oscillation,electromagnetic radiation,and the integration characteristics of Ga N HEMT targeting at a high THz radiation power source.The quantitative radiation power and directivity are obtained for integrated Ga N HEMT array with different array periods and element numbers.With the same initial plasma oscillation phase among the HEMT units,the radiation power of the two-element HEMT array can achieve 4 times as the single HEMT radiation power when the array period is shorter than 1/8electromagnetic wavelength.In addition,the radiation power of the HEMT array varies almost linearly with the element number,the smaller array period can lead to the greater radiation power.It shows that increasing the array period could narrow the main radiated lobe width while weaken the radiation power.Increasing the element number can improve both the radiation directivity and power.We also synchronize the plasma wave phases in the HEMT array by adopting an external Gaussian plane wave with central frequency the same as the plasmon resonant frequency,which solves the problem of the radiation power reduction caused by the asynchronous plasma oscillation phases among the elements.The study of the radiation power amplification of the one-dimensional(1D)Ga N HEMT array provides useful guidance for the research of compact high-power solid-state terahertz sources.
基金the National Natural Science Foundation of China(Nos.51873039 and 51673042)the Young Elite Scientist Sponsorship Program by CAST(No.2017QNRC001)the fund for post-doctoral program of Henan University to Z.H.C.(No.FJ3050A0670001).
文摘As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recent years.Here in this review,we summarized the recent research progress in the preparation methods of 2D polymer nanosheets,mainly including interfacial polymerization and solution polymerization.We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications,such as batteries,supercapacitors,electrocatalysis and photocatalysis.Finally,on the basis of their current development,we put forward the existing challenges and some personal perspectives.
基金D.L.acknowledges the support from the National Basic Research Program of China(No.2018YFA0704403)the National Natural Science Foundation of China(NSFC)(Grant No.61674060)Innovation Fund of Wuhan National Laboratory for Optoelectronics(WNLO).
文摘With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionality of the materials.In the three dimensional case,there is a potential barrier for self-trapping,whereas no such barrier is present for quasi-one-dimensional systems.Two-dimensional(2D)systems are marginal cases with a much lower potential barrier or nonex istent potential barrier for the self-trapping,leading to the easier formation of self-trapped states.Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap.2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic.In particular,self-trapped excitons are present in 2D per-ovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction.Here,we summarized the luminescence characteristics,origins,and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.
基金This research is supported by A*STAR(Nos.C233312013 and 222D800034).
文摘Monomers with low symmetries can form different topological structures in the preparation of organic two-dimensional(2D)materials.However,it remains challenging to modulate the topologies in practical synthesis.Leveraging theoretical insights into the formation energy of potential structural configurations,we report the topology modulation of a graphdiyne(GDY)derivative constructed from two-fold symmetric tetrakis(4-ethynylphenyl)ethene precursor by changing solvent combinations in a liquid-liquid interfacial system.An aqueous-organic(water-dichloromethane)interface afforded GDY with a kagome topology while a rhombic topology was formed at an organic-organic(hexane-acetonitrile)interface.A comprehensive evaluation of their structures and optoelectronic properties was conducted through various characterization techniques and theoretical computations.Our study provided new insights to modulate the topology of not only GDY but also other framework structures and obtain topologically pure materials in situations where different topologies are possible during practical synthesis.
文摘A monolayer of Sr2Nb3Oio(SNO)is deposited on the Pt/Ti/SiCWSi(Pt?Si)or Pt/Ti/polyimide(Pt-Pl)substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline(Nai_xKx)NbO3(NKN)film at 350℃.The crystalline NKN film is grown along the[001]direction on the SNO/Pt-Si(or SNO/Pt-PI)substrate.Due to the presence of oxygen vacancies in the SNO seed-layer,the NKN film exhibits low ferroelectric properties and large leakage current.To ameliorate these properties,the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300℃,which removes the oxygen vacancies.Consequently,the NKN film deposited on this substrate exhibits promising electrical properties,namely a dielectric constant of 278,dissipation factor of 1.7%,a piezoelectric 8nstant of 175 pm`V^-1,and a leakage current density of 6.47 x 10^-7 A cm^-2 at-0.2 MV crrT1.Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350°C.Hence,the NKN films grown on the SNO seed-layer at 350°C can be applied to electronic devices with flexible polymer substrates.
基金supported by the National Natural Science Foundation of China (21731007, 21701191, and 21821003)the Guangdong Pearl River Talents Program (2017BT01C161)the Fundamental Research Funds for the Central Universities (18lgpy42)
文摘Two-dimensional (2D) materials and ultrathin nanosheets have attracted tremendous research interests [1-4]. Exfoliation of porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) with 2D coordination structures is emerging as a viable strategy for preparation of new types of 2D materials [5-8]. The relatively weak bonding within and strong interactions between 2D coordination networks are the main problems for successful exfoliation [9]. Pretreatments of the layered MOFs to expand the interlayer distances can be helpful [10-12]. Capturing the exfoliation intermediates and visualizing their structures are valuable for understanding the exfoliation mechanism and confirming the structures of the final 2D materials [11,12].