The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the compon...The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the components in the production phase was established.Besides,the actual measurement method and calculated at rated power method were proposed for the measurement and calculation of carbon emission,and several measurements were carried out in a component factory located in a coastal area of south China and a component factory located in Beijing,respectively.The results of the study show that the carbon emission factors of laminates and wallboards produced by factories located in coastal areas of southern China under natural curing conditions were 7.61 kg CO2/m3 and 5.84 kg CO2/m3 respectively.The carbon emissions conversion coefficients of concrete mixer,reinforcing bar production line and travelling crane between actual operation and with per the rated power were approximately 0.44,0.34 and 0.34 respectively.When the actual measurement cannot be performed,the conversion coefficient can be used to correct the data of the calculated at rated power to make it closer to the true value.The carbon emission factor of the laminated panels produced by the component factory in Beijing under steam curing concrete conditions was 132.15 kg CO2/m3,and the factory is used as a prototype,a complementary steam generation system model of solar energy and boiler was established,and it was calculated that the system can reduce CO2 emissions by about 300 tons throughout the year.展开更多
Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the wo...Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.展开更多
A unified analysis is presented to calculate the incoherent spontaneous power of cooperative radiations based on self-amplified spontaneous emission. Using quantum mechanical tools, we derive analytical expressions fo...A unified analysis is presented to calculate the incoherent spontaneous power of cooperative radiations based on self-amplified spontaneous emission. Using quantum mechanical tools, we derive analytical expressions for the incoherent spontaneous power of undulator and Cherenkov free-electron lasers (FELs). The undulator and Cherenkov FELs are considered as two different examples for the radiation that accumulate cooperatively. In the case of the undulator FEL, we show an excellent agreement between an expression for the incoherent radiation power derived in the present work and that obtained using a completely different approach [Phys. Ftev. E 65 (2002) 026501]. For the Cherenkov radiation, we demonstrate a satisfactory agreement between the incoherent power predicted in our analysis and previous experimental results.展开更多
A cuprous mononuclear copper complex [Cu(adpypz)CH3CNPPh3]BF4·CH2Cl2(1, adpypz = 9,9-dimethyl-10-(6-(3-phenyl-1H-pyrazol-1-yl)pyridin-2-yl)-9,10-dihydroacridine) was synthesized and characterized by Eleme...A cuprous mononuclear copper complex [Cu(adpypz)CH3CNPPh3]BF4·CH2Cl2(1, adpypz = 9,9-dimethyl-10-(6-(3-phenyl-1H-pyrazol-1-yl)pyridin-2-yl)-9,10-dihydroacridine) was synthesized and characterized by Elemental Analysis, NMR, UV-Vis and X-ray single-crystal structure analysis. It crystallizes in triclinic, space group P1 with a = 11.3388(4), b = 13.4569(4), c = 16.2561(6) ?, α = 97.154(3), β = 92.187(3), γ = 114.119(4)°, V = 2235.38(13) ?3, Z = 2, Mr = 967.12, Dc = 1.437 g/cm^3, F(000) = 996, μ = 2.62 mm^–1, GOOF = 1.031, the final R = 0.0417, and w R = 0.1024 for 8043 observed reflections with I 〉 2σ(I). The Cu(I) atoms in the complex are four-coordinated and adopt a tetrahedral coordination geometry. In the solid state, the complex exhibits bluish-green photoluminescence with emission peaks λmax = 492 nm(1), lifetimes 235 μs and quantum yields(ф = 0.279) at room temperature. The studies of varied temperature emission spectra and decay behaviours of the complex indicate that the complex displays thermally activated delayed fluorescence(TADF) at room temperature. The results of the experimental and DFT calculations suggest that the emission in the solid state originates from the ILCT excited states.展开更多
A cuprous dinuclear copper complex [PPh_2PAr_2Cu(μ-SCN)_2CuPPh_2PAr_2](1,PPh_2PAr_2 =(1-bis(2-methylphenyl)-phosphine-2-diphenylphosphino)benzene) was synthesized from the reaction of Cu SCN and PPh_2PAr_2 in...A cuprous dinuclear copper complex [PPh_2PAr_2Cu(μ-SCN)_2CuPPh_2PAr_2](1,PPh_2PAr_2 =(1-bis(2-methylphenyl)-phosphine-2-diphenylphosphino)benzene) was synthesized from the reaction of Cu SCN and PPh_2PAr_2 in CH_3CN at room temperature. The compound was characterized by Elemental Analysis,NMR,UV-Vis and X-ray single-crystal structure analysis. It crystallizes in triclinic,space group P1 with a = 10.225(2),b = 11.360(2),c = 13.420(3) ?,α = 95.81(3),β = 93.45(3),γ = 113.78(3)°,V = 1410.4(5) ?~3,Z = 1,Mr = 1192.21,Dc = 1.404 g/cm^3,F(000) = 616,μ = 3.029 mm^(–1),GOOF = 1.052,the final R = 0.0359,and w R = 0.0964 for 4878 observed reflections with I 〉 2σ(I). The Cu(I) atoms in the complex are four-coordinated and adopt a tetrahedral coordination geometry. The copper centers in the molecular structure are bridged by two thiocyanate anions and each Cu(I) is chelated further terminally by a PPh_2PAr_2 ligand. The [Cu(μ-SCN)_2Cu] cores have essential planar configurations. In the solid state,the complex exhibits blue photoluminescence with emission peaks λ_(max)= 478 nm(1),lifetimes 4.7 μs and quantum yields(ф = 0.43) at room temperature. The studies of varied temperature emission spectra and decay behaviours of the complex indicate that it displays thermally activated delayed fluorescence at room temperature. The results of the experimental and DFT calculations suggest that the emission in the solid state originates from the ^(1,3)MLCT excited states.展开更多
基金This work was financially supported by National Key R&D Plan(2016YFC0701807).
文摘The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the components in the production phase was established.Besides,the actual measurement method and calculated at rated power method were proposed for the measurement and calculation of carbon emission,and several measurements were carried out in a component factory located in a coastal area of south China and a component factory located in Beijing,respectively.The results of the study show that the carbon emission factors of laminates and wallboards produced by factories located in coastal areas of southern China under natural curing conditions were 7.61 kg CO2/m3 and 5.84 kg CO2/m3 respectively.The carbon emissions conversion coefficients of concrete mixer,reinforcing bar production line and travelling crane between actual operation and with per the rated power were approximately 0.44,0.34 and 0.34 respectively.When the actual measurement cannot be performed,the conversion coefficient can be used to correct the data of the calculated at rated power to make it closer to the true value.The carbon emission factor of the laminated panels produced by the component factory in Beijing under steam curing concrete conditions was 132.15 kg CO2/m3,and the factory is used as a prototype,a complementary steam generation system model of solar energy and boiler was established,and it was calculated that the system can reduce CO2 emissions by about 300 tons throughout the year.
基金supported by the key project of the National Natural Science Foundation of China(No.51034005)the Research Fund for the Doctoral Program of Higher Education(the Specialized Research Fund for the Doctoral Program of Higher Education of China)(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science&Technology Support(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.
基金Supported by the ASRT-INFN Joint Project between the Academy of Scientific Research and Technology in Egypt and INFN in Italy
文摘A unified analysis is presented to calculate the incoherent spontaneous power of cooperative radiations based on self-amplified spontaneous emission. Using quantum mechanical tools, we derive analytical expressions for the incoherent spontaneous power of undulator and Cherenkov free-electron lasers (FELs). The undulator and Cherenkov FELs are considered as two different examples for the radiation that accumulate cooperatively. In the case of the undulator FEL, we show an excellent agreement between an expression for the incoherent radiation power derived in the present work and that obtained using a completely different approach [Phys. Ftev. E 65 (2002) 026501]. For the Cherenkov radiation, we demonstrate a satisfactory agreement between the incoherent power predicted in our analysis and previous experimental results.
基金supported by the National Natural Science Foundation of China(51172232)
文摘A cuprous mononuclear copper complex [Cu(adpypz)CH3CNPPh3]BF4·CH2Cl2(1, adpypz = 9,9-dimethyl-10-(6-(3-phenyl-1H-pyrazol-1-yl)pyridin-2-yl)-9,10-dihydroacridine) was synthesized and characterized by Elemental Analysis, NMR, UV-Vis and X-ray single-crystal structure analysis. It crystallizes in triclinic, space group P1 with a = 11.3388(4), b = 13.4569(4), c = 16.2561(6) ?, α = 97.154(3), β = 92.187(3), γ = 114.119(4)°, V = 2235.38(13) ?3, Z = 2, Mr = 967.12, Dc = 1.437 g/cm^3, F(000) = 996, μ = 2.62 mm^–1, GOOF = 1.031, the final R = 0.0417, and w R = 0.1024 for 8043 observed reflections with I 〉 2σ(I). The Cu(I) atoms in the complex are four-coordinated and adopt a tetrahedral coordination geometry. In the solid state, the complex exhibits bluish-green photoluminescence with emission peaks λmax = 492 nm(1), lifetimes 235 μs and quantum yields(ф = 0.279) at room temperature. The studies of varied temperature emission spectra and decay behaviours of the complex indicate that the complex displays thermally activated delayed fluorescence(TADF) at room temperature. The results of the experimental and DFT calculations suggest that the emission in the solid state originates from the ILCT excited states.
基金supported by the National Natural Science Foundation of China(51172232)
文摘A cuprous dinuclear copper complex [PPh_2PAr_2Cu(μ-SCN)_2CuPPh_2PAr_2](1,PPh_2PAr_2 =(1-bis(2-methylphenyl)-phosphine-2-diphenylphosphino)benzene) was synthesized from the reaction of Cu SCN and PPh_2PAr_2 in CH_3CN at room temperature. The compound was characterized by Elemental Analysis,NMR,UV-Vis and X-ray single-crystal structure analysis. It crystallizes in triclinic,space group P1 with a = 10.225(2),b = 11.360(2),c = 13.420(3) ?,α = 95.81(3),β = 93.45(3),γ = 113.78(3)°,V = 1410.4(5) ?~3,Z = 1,Mr = 1192.21,Dc = 1.404 g/cm^3,F(000) = 616,μ = 3.029 mm^(–1),GOOF = 1.052,the final R = 0.0359,and w R = 0.0964 for 4878 observed reflections with I 〉 2σ(I). The Cu(I) atoms in the complex are four-coordinated and adopt a tetrahedral coordination geometry. The copper centers in the molecular structure are bridged by two thiocyanate anions and each Cu(I) is chelated further terminally by a PPh_2PAr_2 ligand. The [Cu(μ-SCN)_2Cu] cores have essential planar configurations. In the solid state,the complex exhibits blue photoluminescence with emission peaks λ_(max)= 478 nm(1),lifetimes 4.7 μs and quantum yields(ф = 0.43) at room temperature. The studies of varied temperature emission spectra and decay behaviours of the complex indicate that it displays thermally activated delayed fluorescence at room temperature. The results of the experimental and DFT calculations suggest that the emission in the solid state originates from the ^(1,3)MLCT excited states.