A cement factory nearby communities raise pollution concerns. This study assessed air pollution levels for respirable particulate matter (PM2.5 and PM10) and heavy metals (lead, chromium, nickel, cadmium, zinc and cop...A cement factory nearby communities raise pollution concerns. This study assessed air pollution levels for respirable particulate matter (PM2.5 and PM10) and heavy metals (lead, chromium, nickel, cadmium, zinc and copper) adjacent to a cement factory in Ewekoro and neighbouring communities (Papalantoro, Lapeleko and Itori) in Ogun State, Nigeria. Respirable particulate matter (PM2.5 and PM10) and heavy metals were measured using an ARA N-FRM cassette sampler. Each location sampled was monitored for eight continuous hours daily for 12 days. The PM2.5, PM10 and heavy metals results were compared with different standards, including those of the World Health Organization (WHO), Nigeria’s National Environmental Standard and Regulation Enforcement Agency (NESREA) and Canadian Ambient Air Quality Standards (CAAQS). The PM levels fell within 11 - 19 μg/m3 of the air management level of CAAQS, which signifies continuous actions are needed to improve air quality in the areas monitored but below the NESREA standard. The mean Cd, Cr and Ni concentrations in the cement factory area and the impacted neighbourhoods are higher than the WHO/EU permissible limits, while Zn and Cu were below the WHO/EU permissible limit. A risk assessment hazard quotient (HQ) for Cr was above the WHO/EU safe level (=1) in adults and children throµgh ingestion, inhalation and dermal contact at all the monitoring sites. The HQ for Ni and Cd was higher than the safe level in the cement factory area and Papalantoro, while Zn was at safe levels.展开更多
This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guide...This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry.展开更多
The Northern Key Economic region of Vietnam is a dynamic economic center that is an important economic locomotive of the North and the whole of Vietnam.In this area,large industrial parks are concentrated,attracting m...The Northern Key Economic region of Vietnam is a dynamic economic center that is an important economic locomotive of the North and the whole of Vietnam.In this area,large industrial parks are concentrated,attracting many large FDI projects.Key industries:cement production,cars-motorcycles,electronics,...Economic development entails environmental problems.The industrial sector has been identified as the number one driving force driving the growth of Hanoi city and neighboring provinces.Therefore,industrial development is one of the main causes of environmental pollution.In addition,the growth rate of industry in neighboring provinces significantly affects the air quality in Hanoi city.Some factories in Vinh Phuc,Hung Yen,Bac Ninh and Hai Duong provinces have large sources of gas emissions,potentially affecting air quality around Hanoi city.Monitoring results show that air pollution in Hanoi city is mainly caused by dust pollution,especially PM2.5 superfine dust.This is a very harmful dust to health;it is necessary to determine the cause and control solution.Therefore,the objectives of this study are:(1)inventory of potential emissions sources for industrial activities in the northern key economic region around Hanoi;(2)Simulate air spread by AERMOD model to get an overall picture of the industrial impact of surrounding provinces in Hanoi city;(3)Propose solutions to manage air quality for the city in the coming time.Simulation results for pollutants with the highest concentration of NOx for 1 hour,24 hours and the average of the year is 7.94;1.02;0.222(μg/m3);of CO for 1 hour and 8 hours are 27.616;8.89(μg/m3);of SO2 for 1 hour,24 hours and the average of the year is 4.005;0.288;0.038(μg/m3);of PM2.5 for 1 hour,24 hours and the average of the year is 0.32;0.023;0.003(μg/m3);of PM10 in 1 hour,24 hours and year average are 1.03;0.074;0.098(μg/m3).展开更多
The amount of several air pollutants emitted in some cities including Hangzhou,Ningbo,Huzhou,Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010.This paper f...The amount of several air pollutants emitted in some cities including Hangzhou,Ningbo,Huzhou,Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010.This paper focused on the release of air pollutants such as NO_(x2),SO_2,CO,PM2.5,PM10 and VOC,and calculated the total amount of those air pollutants.It analyzed air pollutant emission factors and found that the electricity and heat production industry released the largest amount of pollutants.展开更多
Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atm...Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atmosphere. The air quality in urban areas is of a great concern for residents living in cities and represents a current issue that requires an adequate management. So that air quality policy is driven by health concerns. In this paper, we present an overview on the experience of Agadir city to establish the air quality management policy, local authority on the whole have developed a good understanding of air quality in the area. Indeed for several years, efforts have been made to monitor the air quality in this city, this translated by air quality assessment since 2006 using mobile laboratory and fixed station. Our goals in this study were to review the operation of Local Air Quality Management (LAQM) making better use of available resources to improve its outcomes and make recommendations with a view to improving air quality issues. This work highlights the requirement to revise periodically the LAQM for generating priority for air quality issues within local authority and the need to implement the optimizing Air Quality Monitoring Network (AQMN).展开更多
The overall objective of this study was to establish the effects of steel industrial effluent on Nairobi metropolitan water system and its impact to the society. The study sought to identify various types of wastes pr...The overall objective of this study was to establish the effects of steel industrial effluent on Nairobi metropolitan water system and its impact to the society. The study sought to identify various types of wastes produced by factories, assess how the waste generated is managed and disposed</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> examine the effects of effluent discharge on Nairobi River and finally propose mitigation measures. The research adopted a qualitative design and employed a number of methods: direct observations, document reviews to content analysis of the past studies, which in the end generated invaluable data. The study revealed that there are four categories of waste generated</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> solid waste, liquid waste, footbath chemicals as well as thermal wastes. It was also found that waste management in place w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> not effective enough leading to water and soil pollution. Other causes of pollution were found out to emanate from gasses contamination to the air and chemicals used during steel processing. The findings will inform the community of the harmful effects of untreated water and how it impacts on their health and productivity. It will also help the stakeholders in the environmental conservation to articulate issues of policy and influence agenda setting in the national and sub-national levels.展开更多
Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a la...Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises.Here,we present an integrated emission inventory that encompasses air pollutants and CO_(2)emissions from 811 ISI enterprises and five key manufacturing processes in 2020.Our analysis shows that sintering is the primary source of air pollution in the ISI.It contributes 71%of SO_(2),73%of NO_(x),and 54%of PM_(2.5)emissions.On the other hand,81%of total CO_(2)emissions come from blast furnaces.Significantly,the contributions of ISI have resulted in an increase of 3.6 mg m^(-3)in national population-weighted PM_(2.5)concentration,causing approximately 59,035 premature deaths in 2020.Emissions from Hebei,Jiangsu,Shandong,Shanxi,and Inner Mongolia provinces contributed to 48%of PM_(2.5)-related deaths in China.Moreover,the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality.Based on the research findings,it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques,along with ultra-low emission technologies.This is particularly important for those manufacturers with substantial environmental footprints.These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.展开更多
The total emission control method based on atmospheric environmental capacity is the most effective in air pollution mitigation. The atmospheric environmental capacities of SO2 on representative days over Lanzhou are ...The total emission control method based on atmospheric environmental capacity is the most effective in air pollution mitigation. The atmospheric environmental capacities of SO2 on representative days over Lanzhou are estimated using the numerical models RAMS, HYPACT and a linear programming model, according to the national ambient air quality standard of China (NAAQSCHN). The results show that the fields of meteorological elements and SO2 simulated by the models agree reasonably well with observations. The atmospheric environmental capacity of SO2 over Lanzhou is around 111.7 × 10^3 kg d^-1, and in order to meet the air quality level Ⅱ of the NAAQSCHN, SO2 emissions need to be reduced by 20%.展开更多
Industries have contributed for human development by improving human life styles, increasing human life expectancy rate, providing more and more jobs. Still industrialization has many negative impacts on the environme...Industries have contributed for human development by improving human life styles, increasing human life expectancy rate, providing more and more jobs. Still industrialization has many negative impacts on the environment and especially on human health. This investigation was carried out to probe the impacts of Quaid-e-Azam Industrial Estate on Township area, Lahore. During this investigation wastewater monitoring and ambient air monitoring had been done. Samples from main industrial drain were collected for wastewater analysis and seventeen parameters including pH, temperature, color, odor, turbidity, conductivity, chemical oxygen demand (COD), biological oxygen demand (BOD), chlorides, oil/grease, total suspended solids (TSS), total dissolved solids (TDS), ammonia-nitrogen (NH3 - N2), iron, sulfate, nickel and chromium were investigated. Among them pH, total suspended solids, biological oxygen demand, chemical oxygen demand, ammonia-nitrogen were found exceeding the NEQS limits. The ambient air samples were also collected and five parameters of ambient air including particulate matter (PM10), nitrogen dioxide, sulfur dioxide, carbon monoxide and noise were monitored. Among them only particulate matter was exceeding the WHO guidelines. Although there were few parameters like pH, TSS, BOD, COD and NH3 - N2 of water and PM10 of air, which do not lie within the national environmental quality standards (NEQS) limits but proper monitoring is needed to be done so that parameters may not cross their permissible limits in future. This problem must be taken into consideration by both the management of Quaid-e-Azam Industrial Estate and Governmental agencies because it is the responsibility of state also to make the environment clean.展开更多
The lack of data on air quality monitoring and neglected and overlooked pollutant emissions in the transportation and industrial sectors are motives for the government of Senegal to set up, in 2009, an air quality man...The lack of data on air quality monitoring and neglected and overlooked pollutant emissions in the transportation and industrial sectors are motives for the government of Senegal to set up, in 2009, an air quality management center, the CGQA</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">(Centre de Gestion de la Qualité de l’Air). Air quality monitoring at CGQA deals with mainly six pollutants: carbon monoxide (CO), nitrogen oxides (NO</span><sub><span style="font-family:Verdana;">x</span></sub><span style="font-family:Verdana;">) (with nitrogen dioxide (NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) and nitrogen monoxide </span><span><span style="font-family:Verdana;">(NO)), sulfur dioxide (SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">), ground-level ozone (O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">), Benzene-Toluene-Xylenes</span></span><span style="font-family:Verdana;"> (BTX), and particulate matters (PM) with diameters less than 10 μm (PM</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;">) and 2.5 μm (PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">). The concentration levels of gaseous pollutants (CO, O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) in the city generally remain below the limit value set by the WHO (World Health Organization). However, particulate matters (PM</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> and PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">) are the most important pollutants observed in Dakar, they far exceed the annual thresholds set by the WHO and the national standard (NS 05-062). This situation results in an Air Quality Index (AQI) around bad and very bad during the dry season (November to May) and good to moderate during the rainy season (June to October). The concentrations of PM</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> and PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;"> vary respectively from 120 to 180 μg</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and from 25 to 48 μg</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. The average concentrations of pollutants therefore vary from one area to another and depending on the location of the air quality monitoring station (near industrial sites, traffic, etc.).展开更多
The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ult...The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ultra-low pollutant emission control technology has been researched and developed.Liquid-phase proportion control technology has been developed for magnesian fluxed pellets,and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets(80%)for the first time in China to realize source emission reduction of SO_(2)and NO_(x).Based on the characteristics of high NO_(x)concentrations and the coexistence of multiple pollutants in coke oven flue gas,low-NO_(x)combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur.Based on the characteristics of co-existing multiple pollutants in pellet flue gas,selective non-catalytic reduction(SNCR)coupled with ozone oxidation and spray drying adsorption(SDA)was developed,which significantly reduces the operating cost of the system.In the light of the high humidity and high alkalinity in flue gas,filter materials with high humidity resistance and corrosion resistance were manufactured,and an integrated pre-charged bag dust collector device was developed,which realized ultralow emission of fine particles and reduced filtration resistance and energy consumption in the system.Through source emission reduction,process control and end-treatment technologies,five demonstration projects were built,providing a full set of technical solutions for ultra-low emissions of dust,SO_(2),NO_(x),SO_(3),mercury and other pollutants,and offering technical support for the green development of the iron and steel industry.展开更多
Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Comm...Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.展开更多
Industrial emissions are the main source of atmospheric pollutants in China.Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmosph...Industrial emissions are the main source of atmospheric pollutants in China.Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmospheric pollutants and control atmospheric pollution precisely.Based on China’s coking enterprises in 2020,we proposed a quantitative method for pollutant emission standards and introduced the quantification results of pollutant emission standards(QRPES)into the construction of support vector regression(SVR)and random forest regression(RFR)prediction methods for SO_(2) emission of coking enterprises in China.The results show that,affected by the types of coke ovens and regions,China’s current coking enterprises have implemented a total of 21 emission standards,with marked differences.After adding QRPES,it was found that the root mean squared error(RMSE)of SVR and RFR decreased from 0.055 kt/a and 0.059 kt/a to 0.045 kt/a and 0.039 kt/a,and the R2 increased from 0.890 and 0.881 to 0.926 and 0.945,respectively.This shows that the QRPES can greatly improve the prediction accuracy,and the SO_(2) emissions of each enterprise are highly correlated with the strictness of standards.The predicted result shows that 45%of SO_(2) emissions from Chinese coking enterprises are concentrated in Shanxi,Shaanxi and Hebei provinces in central China.The method created in this paper fills in the blank of forecasting method of air pollutant emission intensity of single enterprise and is of great help to the accurate control of air pollutants.展开更多
Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive,were estimated to evaluate the contribution ...Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive,were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter(PM), NOx and SO2, for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand(PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less.展开更多
文摘A cement factory nearby communities raise pollution concerns. This study assessed air pollution levels for respirable particulate matter (PM2.5 and PM10) and heavy metals (lead, chromium, nickel, cadmium, zinc and copper) adjacent to a cement factory in Ewekoro and neighbouring communities (Papalantoro, Lapeleko and Itori) in Ogun State, Nigeria. Respirable particulate matter (PM2.5 and PM10) and heavy metals were measured using an ARA N-FRM cassette sampler. Each location sampled was monitored for eight continuous hours daily for 12 days. The PM2.5, PM10 and heavy metals results were compared with different standards, including those of the World Health Organization (WHO), Nigeria’s National Environmental Standard and Regulation Enforcement Agency (NESREA) and Canadian Ambient Air Quality Standards (CAAQS). The PM levels fell within 11 - 19 μg/m3 of the air management level of CAAQS, which signifies continuous actions are needed to improve air quality in the areas monitored but below the NESREA standard. The mean Cd, Cr and Ni concentrations in the cement factory area and the impacted neighbourhoods are higher than the WHO/EU permissible limits, while Zn and Cu were below the WHO/EU permissible limit. A risk assessment hazard quotient (HQ) for Cr was above the WHO/EU safe level (=1) in adults and children throµgh ingestion, inhalation and dermal contact at all the monitoring sites. The HQ for Ni and Cd was higher than the safe level in the cement factory area and Papalantoro, while Zn was at safe levels.
文摘This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry.
基金The authors would like to thank the Ministry of Natural Resources and Environment for funding this study through the project code TNMT.2020.04.10 and Contract No.28/HD-VP signed on October 1,2020.
文摘The Northern Key Economic region of Vietnam is a dynamic economic center that is an important economic locomotive of the North and the whole of Vietnam.In this area,large industrial parks are concentrated,attracting many large FDI projects.Key industries:cement production,cars-motorcycles,electronics,...Economic development entails environmental problems.The industrial sector has been identified as the number one driving force driving the growth of Hanoi city and neighboring provinces.Therefore,industrial development is one of the main causes of environmental pollution.In addition,the growth rate of industry in neighboring provinces significantly affects the air quality in Hanoi city.Some factories in Vinh Phuc,Hung Yen,Bac Ninh and Hai Duong provinces have large sources of gas emissions,potentially affecting air quality around Hanoi city.Monitoring results show that air pollution in Hanoi city is mainly caused by dust pollution,especially PM2.5 superfine dust.This is a very harmful dust to health;it is necessary to determine the cause and control solution.Therefore,the objectives of this study are:(1)inventory of potential emissions sources for industrial activities in the northern key economic region around Hanoi;(2)Simulate air spread by AERMOD model to get an overall picture of the industrial impact of surrounding provinces in Hanoi city;(3)Propose solutions to manage air quality for the city in the coming time.Simulation results for pollutants with the highest concentration of NOx for 1 hour,24 hours and the average of the year is 7.94;1.02;0.222(μg/m3);of CO for 1 hour and 8 hours are 27.616;8.89(μg/m3);of SO2 for 1 hour,24 hours and the average of the year is 4.005;0.288;0.038(μg/m3);of PM2.5 for 1 hour,24 hours and the average of the year is 0.32;0.023;0.003(μg/m3);of PM10 in 1 hour,24 hours and year average are 1.03;0.074;0.098(μg/m3).
基金supported by the Special Major Science and Technology Project of Zhejiang Province "the Prevention and Control of Regional Haze Weather in Cities of Zhejiang"[projectno.2011C13022]Science and Technology Project of Environmental Protection Bureau of Zhejiang Province "Rulesand Countermeasures of Haze Weather in Zhejiang Province"[project no.200914]
文摘The amount of several air pollutants emitted in some cities including Hangzhou,Ningbo,Huzhou,Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010.This paper focused on the release of air pollutants such as NO_(x2),SO_2,CO,PM2.5,PM10 and VOC,and calculated the total amount of those air pollutants.It analyzed air pollutant emission factors and found that the electricity and heat production industry released the largest amount of pollutants.
文摘Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atmosphere. The air quality in urban areas is of a great concern for residents living in cities and represents a current issue that requires an adequate management. So that air quality policy is driven by health concerns. In this paper, we present an overview on the experience of Agadir city to establish the air quality management policy, local authority on the whole have developed a good understanding of air quality in the area. Indeed for several years, efforts have been made to monitor the air quality in this city, this translated by air quality assessment since 2006 using mobile laboratory and fixed station. Our goals in this study were to review the operation of Local Air Quality Management (LAQM) making better use of available resources to improve its outcomes and make recommendations with a view to improving air quality issues. This work highlights the requirement to revise periodically the LAQM for generating priority for air quality issues within local authority and the need to implement the optimizing Air Quality Monitoring Network (AQMN).
文摘The overall objective of this study was to establish the effects of steel industrial effluent on Nairobi metropolitan water system and its impact to the society. The study sought to identify various types of wastes produced by factories, assess how the waste generated is managed and disposed</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> examine the effects of effluent discharge on Nairobi River and finally propose mitigation measures. The research adopted a qualitative design and employed a number of methods: direct observations, document reviews to content analysis of the past studies, which in the end generated invaluable data. The study revealed that there are four categories of waste generated</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> solid waste, liquid waste, footbath chemicals as well as thermal wastes. It was also found that waste management in place w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> not effective enough leading to water and soil pollution. Other causes of pollution were found out to emanate from gasses contamination to the air and chemicals used during steel processing. The findings will inform the community of the harmful effects of untreated water and how it impacts on their health and productivity. It will also help the stakeholders in the environmental conservation to articulate issues of policy and influence agenda setting in the national and sub-national levels.
基金supported by the National Natural Science Foundation of China[Grant No.72174126,72243008].
文摘Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises.Here,we present an integrated emission inventory that encompasses air pollutants and CO_(2)emissions from 811 ISI enterprises and five key manufacturing processes in 2020.Our analysis shows that sintering is the primary source of air pollution in the ISI.It contributes 71%of SO_(2),73%of NO_(x),and 54%of PM_(2.5)emissions.On the other hand,81%of total CO_(2)emissions come from blast furnaces.Significantly,the contributions of ISI have resulted in an increase of 3.6 mg m^(-3)in national population-weighted PM_(2.5)concentration,causing approximately 59,035 premature deaths in 2020.Emissions from Hebei,Jiangsu,Shandong,Shanxi,and Inner Mongolia provinces contributed to 48%of PM_(2.5)-related deaths in China.Moreover,the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality.Based on the research findings,it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques,along with ultra-low emission technologies.This is particularly important for those manufacturers with substantial environmental footprints.These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.
基金the National Natural Science Foundation of China (Grant No. 40305020).
文摘The total emission control method based on atmospheric environmental capacity is the most effective in air pollution mitigation. The atmospheric environmental capacities of SO2 on representative days over Lanzhou are estimated using the numerical models RAMS, HYPACT and a linear programming model, according to the national ambient air quality standard of China (NAAQSCHN). The results show that the fields of meteorological elements and SO2 simulated by the models agree reasonably well with observations. The atmospheric environmental capacity of SO2 over Lanzhou is around 111.7 × 10^3 kg d^-1, and in order to meet the air quality level Ⅱ of the NAAQSCHN, SO2 emissions need to be reduced by 20%.
文摘Industries have contributed for human development by improving human life styles, increasing human life expectancy rate, providing more and more jobs. Still industrialization has many negative impacts on the environment and especially on human health. This investigation was carried out to probe the impacts of Quaid-e-Azam Industrial Estate on Township area, Lahore. During this investigation wastewater monitoring and ambient air monitoring had been done. Samples from main industrial drain were collected for wastewater analysis and seventeen parameters including pH, temperature, color, odor, turbidity, conductivity, chemical oxygen demand (COD), biological oxygen demand (BOD), chlorides, oil/grease, total suspended solids (TSS), total dissolved solids (TDS), ammonia-nitrogen (NH3 - N2), iron, sulfate, nickel and chromium were investigated. Among them pH, total suspended solids, biological oxygen demand, chemical oxygen demand, ammonia-nitrogen were found exceeding the NEQS limits. The ambient air samples were also collected and five parameters of ambient air including particulate matter (PM10), nitrogen dioxide, sulfur dioxide, carbon monoxide and noise were monitored. Among them only particulate matter was exceeding the WHO guidelines. Although there were few parameters like pH, TSS, BOD, COD and NH3 - N2 of water and PM10 of air, which do not lie within the national environmental quality standards (NEQS) limits but proper monitoring is needed to be done so that parameters may not cross their permissible limits in future. This problem must be taken into consideration by both the management of Quaid-e-Azam Industrial Estate and Governmental agencies because it is the responsibility of state also to make the environment clean.
文摘The lack of data on air quality monitoring and neglected and overlooked pollutant emissions in the transportation and industrial sectors are motives for the government of Senegal to set up, in 2009, an air quality management center, the CGQA</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">(Centre de Gestion de la Qualité de l’Air). Air quality monitoring at CGQA deals with mainly six pollutants: carbon monoxide (CO), nitrogen oxides (NO</span><sub><span style="font-family:Verdana;">x</span></sub><span style="font-family:Verdana;">) (with nitrogen dioxide (NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) and nitrogen monoxide </span><span><span style="font-family:Verdana;">(NO)), sulfur dioxide (SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">), ground-level ozone (O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">), Benzene-Toluene-Xylenes</span></span><span style="font-family:Verdana;"> (BTX), and particulate matters (PM) with diameters less than 10 μm (PM</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;">) and 2.5 μm (PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">). The concentration levels of gaseous pollutants (CO, O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, NO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and SO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) in the city generally remain below the limit value set by the WHO (World Health Organization). However, particulate matters (PM</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> and PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">) are the most important pollutants observed in Dakar, they far exceed the annual thresholds set by the WHO and the national standard (NS 05-062). This situation results in an Air Quality Index (AQI) around bad and very bad during the dry season (November to May) and good to moderate during the rainy season (June to October). The concentrations of PM</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> and PM</span><sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;"> vary respectively from 120 to 180 μg</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and from 25 to 48 μg</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. The average concentrations of pollutants therefore vary from one area to another and depending on the location of the air quality monitoring station (near industrial sites, traffic, etc.).
基金supported by the National Key R&D Program of China(Nos.2017YFC0210600 and 2019YFC0214803)。
文摘The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ultra-low pollutant emission control technology has been researched and developed.Liquid-phase proportion control technology has been developed for magnesian fluxed pellets,and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets(80%)for the first time in China to realize source emission reduction of SO_(2)and NO_(x).Based on the characteristics of high NO_(x)concentrations and the coexistence of multiple pollutants in coke oven flue gas,low-NO_(x)combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur.Based on the characteristics of co-existing multiple pollutants in pellet flue gas,selective non-catalytic reduction(SNCR)coupled with ozone oxidation and spray drying adsorption(SDA)was developed,which significantly reduces the operating cost of the system.In the light of the high humidity and high alkalinity in flue gas,filter materials with high humidity resistance and corrosion resistance were manufactured,and an integrated pre-charged bag dust collector device was developed,which realized ultralow emission of fine particles and reduced filtration resistance and energy consumption in the system.Through source emission reduction,process control and end-treatment technologies,five demonstration projects were built,providing a full set of technical solutions for ultra-low emissions of dust,SO_(2),NO_(x),SO_(3),mercury and other pollutants,and offering technical support for the green development of the iron and steel industry.
基金provided by the U.S. Environmental Protection Agency (Subcontract Number OR13810-001.04 A10-0223-S001-A04)partly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (No. 2011A060901011)+1 种基金the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201308)the project of Atmospheric Haze Collaborative Control System Design (No. XDB05030400) from Chinese Academy of Sciences
文摘Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.
基金supported by the National Key R&D Program of China(No.2018YFC1800106)。
文摘Industrial emissions are the main source of atmospheric pollutants in China.Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmospheric pollutants and control atmospheric pollution precisely.Based on China’s coking enterprises in 2020,we proposed a quantitative method for pollutant emission standards and introduced the quantification results of pollutant emission standards(QRPES)into the construction of support vector regression(SVR)and random forest regression(RFR)prediction methods for SO_(2) emission of coking enterprises in China.The results show that,affected by the types of coke ovens and regions,China’s current coking enterprises have implemented a total of 21 emission standards,with marked differences.After adding QRPES,it was found that the root mean squared error(RMSE)of SVR and RFR decreased from 0.055 kt/a and 0.059 kt/a to 0.045 kt/a and 0.039 kt/a,and the R2 increased from 0.890 and 0.881 to 0.926 and 0.945,respectively.This shows that the QRPES can greatly improve the prediction accuracy,and the SO_(2) emissions of each enterprise are highly correlated with the strictness of standards.The predicted result shows that 45%of SO_(2) emissions from Chinese coking enterprises are concentrated in Shanxi,Shaanxi and Hebei provinces in central China.The method created in this paper fills in the blank of forecasting method of air pollutant emission intensity of single enterprise and is of great help to the accurate control of air pollutants.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI,253030003
文摘Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive,were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter(PM), NOx and SO2, for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand(PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less.