In recent years,China has implemented several measures to improve air quality.The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge chan...In recent years,China has implemented several measures to improve air quality.The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years.How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future.To evaluate the changes in major air pollutant emissions over this region,this paper employs ensemble Kalman filtering(EnKF)for integrating the national ground monitoring pollutant observation data and the Nested Air Quality Prediction Modeling System(NAQPMS)simulation data to inversely estimate the emission rates of SO_(2),NOX,CO,and primary PM_(2.5)over BTH region in February from 2014 to 2019.The results show that SO_(2),NOX,CO,and primary PM_(2.5)emissions in the BTH region decreased in February from 2014 to 2019 by 83%,37%,41%,and 42%,while decreases in Beijing during this period were 86%,67%,59%,and 65%,respectively.Compared with the prior emission inventory,the inversion emission inventory reduces the uncertainty of multi-pollutant simulation in the BTH region,with simulated root mean square errors of the monthly average concentrations of SO_(2),NOX,PM_(2.5),and CO reduced by 41%,30%,31%,and 22%,respectively.The average uncertainties of SO_(2),NOX,PM_(2.5),and CO inversion emissions in2014-19 are±14.03%yr^(-1),±28.91%yr^(-1),±126.15%yr^(-1),and±43.58%yr^(-1).Compared with the uncertainty of MEIC emission,the uncertainties of all species changed by+2%yr^(-1),-2%yr^(-1),-26%yr^(-1),and-4%yr^(-1),respectively.The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions.The spatial gap between the inversion emissions and MEIC emissions was further closed in 2019 compared to 2014.The results of this paper can provide a new reference for assessing changes in air pollution emissions over the BTH region in recent years and validating a bottom-up emission inventory.展开更多
This paper provides a general review of the research status of mercury emissions in China.Global surveys rank Asia as the region with the largest share of global mercury emissions,accounting for almost half.China cont...This paper provides a general review of the research status of mercury emissions in China.Global surveys rank Asia as the region with the largest share of global mercury emissions,accounting for almost half.China contributes about one-third of the world’s mercury emissions,which is 600-800 t per year.And thus,it plays a vital role in reducing global mercury emissions.Data since 2003 has been surveyed.Mercury emissions in China have risen in the beginning and then declined.There are differences in the composition of mercury emissions sources between China and the world,in which coal combustion and non-ferrous metals smelting contribute more than 50%of the emissions in China.Although mercury emission standards in China are close to those of the European Union and the United States,annual mercury emissions in China are four times higher than those of the United States.Mercury emissions in China are concentrated in the central and eastern regions now,but the annual mercury emissions are increasing in the western regions,which may be related to the construction of industrial parks.展开更多
基金supported by National Natural Science Foundation(Grant Nos.41875164 and 92044303)。
文摘In recent years,China has implemented several measures to improve air quality.The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years.How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future.To evaluate the changes in major air pollutant emissions over this region,this paper employs ensemble Kalman filtering(EnKF)for integrating the national ground monitoring pollutant observation data and the Nested Air Quality Prediction Modeling System(NAQPMS)simulation data to inversely estimate the emission rates of SO_(2),NOX,CO,and primary PM_(2.5)over BTH region in February from 2014 to 2019.The results show that SO_(2),NOX,CO,and primary PM_(2.5)emissions in the BTH region decreased in February from 2014 to 2019 by 83%,37%,41%,and 42%,while decreases in Beijing during this period were 86%,67%,59%,and 65%,respectively.Compared with the prior emission inventory,the inversion emission inventory reduces the uncertainty of multi-pollutant simulation in the BTH region,with simulated root mean square errors of the monthly average concentrations of SO_(2),NOX,PM_(2.5),and CO reduced by 41%,30%,31%,and 22%,respectively.The average uncertainties of SO_(2),NOX,PM_(2.5),and CO inversion emissions in2014-19 are±14.03%yr^(-1),±28.91%yr^(-1),±126.15%yr^(-1),and±43.58%yr^(-1).Compared with the uncertainty of MEIC emission,the uncertainties of all species changed by+2%yr^(-1),-2%yr^(-1),-26%yr^(-1),and-4%yr^(-1),respectively.The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions.The spatial gap between the inversion emissions and MEIC emissions was further closed in 2019 compared to 2014.The results of this paper can provide a new reference for assessing changes in air pollution emissions over the BTH region in recent years and validating a bottom-up emission inventory.
文摘This paper provides a general review of the research status of mercury emissions in China.Global surveys rank Asia as the region with the largest share of global mercury emissions,accounting for almost half.China contributes about one-third of the world’s mercury emissions,which is 600-800 t per year.And thus,it plays a vital role in reducing global mercury emissions.Data since 2003 has been surveyed.Mercury emissions in China have risen in the beginning and then declined.There are differences in the composition of mercury emissions sources between China and the world,in which coal combustion and non-ferrous metals smelting contribute more than 50%of the emissions in China.Although mercury emission standards in China are close to those of the European Union and the United States,annual mercury emissions in China are four times higher than those of the United States.Mercury emissions in China are concentrated in the central and eastern regions now,but the annual mercury emissions are increasing in the western regions,which may be related to the construction of industrial parks.