Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Fo...Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi.展开更多
In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from pe...In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from peanut shells,cashew nut shells,and corn cobs were produced using wheat flour as a binder.The binder rate was set at 9%and 10%.Based on the energy performance parameters,it was highlighted that the char briquette from corn cob with 9%binder(Char_CC_9%)has the best energy performance,followed by the char briquette from peanut shells with 9%binder(Char_PNS_9%),and lastly,the char briquette from cashew nut shells with 10%binder(Char_CNS_10%).The average energy efficiency of the“jambar”stove was 15.68%,while that of the“Malgache”stove was 12.41%.The average specific fuel consumption of the“jambar”stove was 0.12 kg of fuel per kilogram of water while that of the“Malgache”stove was 0.15 kg of fuel per kilogram of water.In terms of gaseous emissions,CO(carbon monoxide)concentrations were very high for char briquettes from corn cobs,with a CO emission factor of 0.40 g/min and NOx emission factor of 9.79 mg/min.For char briquettes from cashew nut shells,CO and NOx emission factors were respectively 0.30 g/min and 5.32 mg/min.The lowest average concentrations were obtained with char briquettes from peanut shells with a CO emission factor of 0.25 g/min and NOx 3.98 mg/min.展开更多
Reducing carbon emissions in the power sector is critical for transitioning to a sustainable and low-carbon future.Estimating carbon efficiency of demand side response(DSR)in the power system is an important step towa...Reducing carbon emissions in the power sector is critical for transitioning to a sustainable and low-carbon future.Estimating carbon efficiency of demand side response(DSR)in the power system is an important step towards realizing potential environmental benefits.Marginal emission factor(MEF)is an effective tool for estimating incremental changes in carbon emissions as a result of a change in demand.However,estimation methods currently used for evaluating MEF can be improved upon,specifically,by factoring in the ramp-rate constraint of generators in the fuel cost based merit order dispatch.In this paper is described a new method for MEF assessment under ramp-rate constraints;the method is then compared with two conventional estimations in a British power system.Three fuel price scenarios are used to conduct a sensitivity analysis of MEFs to fuel prices.Conclusions are drawn that can pave the way for future improvements in estimating MEF in power systems.展开更多
A comprehensive agricultural inventory of ammonia emissions for 2017 in Hefei was established on the basis of the specific emission factors and county-level activity data.The emissions over a 1 km×1 km grid and t...A comprehensive agricultural inventory of ammonia emissions for 2017 in Hefei was established on the basis of the specific emission factors and county-level activity data.The emissions over a 1 km×1 km grid and the associated monthly variations were distributed on the basis of land-use type and meteorological conditions,respectively.The total ammonia emissions were 27,242.7 t in 2017 in Hefei,to which livestock was the top contributor,accounting for 54.5%.Two major contributors to livestock waste were broilers and laying hens,which contributed 34.5%and 22.2%of the total emissions,respectively.Changfeng,Feixi,and Feidong counties,with more developed agriculture than other counties,accounted for a large proportion of the total ammonia emissions—as much as 28.5%,24.5%,and 21.0%,respectively.The average emissions density of the whole region was 2.4 t km−2,and the higher values were mostly in areas with denser populations.Seasonally,peak ammonia emissions occurred in summer.展开更多
The life-cycle assessment method,which originates from general products and services,has gradually come to be applied to investigations of the life-cycle carbon emissions(LCCE)of buildings.A literature review was cond...The life-cycle assessment method,which originates from general products and services,has gradually come to be applied to investigations of the life-cycle carbon emissions(LCCE)of buildings.A literature review was conducted to clarify LCCE implications,calculations,and reductions in the context of buildings.A total of 826 global building carbon emission calculation cases were obtained from 161 studies based on the framework of the building life-cycle stage division stipulated by ISO 21930 and the basic principles of the emission factor(EF)approach.The carbon emission calculation methods and results are discussed herein,based on the modules of production,construction,use,end-of-life,and supplementary benefits.According to the hotspot distribution of a building’s carbon emissions,carbon reduction strategies are classified into six groups for technical content and benefits analysis,including reducing the activity data pertaining to building materials and energy,reducing the carbon EFs of the building materials and energy,and exploiting the advantages of supplementary benefits.The research gaps and challenges in current building LCCE studies are summarized in terms of research goals and ideas,calculation methods,basic parameters,and carbon reduction strategies;development suggestions are also proposed.展开更多
With the focus of highway development transitioning from construction to maintenance,a comprehensive understanding of the characteristics and influencing factors of carbon dioxide(CO_(2))emissions from highway mainten...With the focus of highway development transitioning from construction to maintenance,a comprehensive understanding of the characteristics and influencing factors of carbon dioxide(CO_(2))emissions from highway maintenance activities is crucial for formulating effective strategies to promote the low-carbon development of road infrastructure.However,the quantitative relationships between CO_(2) emissions from highway maintenance schemes and factors such as pavement deterioration,traffic volume,and road grade remain unclear owing to a lack of compre-hensive,multi-category,and real data.Using real maintenance data from 340 arterial highway segments in China,this study conducts the life cycle assessment(LCA)to estimate CO_(2) emissions from maintenance activities and examines the primary emission sources among various structural layers and materials.Furthermore,multiple linear regression(MLR)analysis is conducted to investigate the impact of traffic volume,road grade,and pavement deterioration on CO_(2) emissions from maintenance projects,and factors influencing the early-stage degradation of pavement performance.The results demonstrate that average CO_(2) emissions from heavy rehabilitation projects are 6.97 times higher than those from medium rehabilitation projects.Emissions from heavy rehabilitation projects exhibit a significantly negative linear relationship with the riding quality index(RQI)before maintenance(p<0.05),and emissions from medium rehabilitation projects show a significant negative linear relationship with the pavement condition index(PCI)before maintenance(p<0.05).Emissions from heavy and medium rehabilitation projects are significantly positively correlated with heavy vehicle traffic volume before maintenance(p<0.05).Moreover,the early-stage degradation of PCI after heavy rehabilitation and RQI after medium rehabilitation exhibit significantly negative linear relationships with their respective in-dicators before maintenance(p<0.05).The early-stage degradation of RQI after heavy rehabilitation is significantly positively correlated with CO_(2) emissions from the base course and cushion layers(p<0.05).The findings emphasize that timely maintenance and reduction of CO_(2) emissions from asphalt mixing equipment are essential for mitigating emissions from road maintenance.This study offers valuable insights for advancing the low-carbon development of highways in temperate regions.展开更多
Nitric oxide(NO)emissions from alpine ecosystems conventionally being long-term cultivated with feed crops are not well quantified.The authors attempted to address this knowledge gap by performing a year-round experim...Nitric oxide(NO)emissions from alpine ecosystems conventionally being long-term cultivated with feed crops are not well quantified.The authors attempted to address this knowledge gap by performing a year-round experimental campaign in the northeastern Tibetan Plateau.Fertilized(F)and unfertilized(UF)treatments were established within a flat calcareous-soil site for the long-term cultivation of feed oats.NO fluxes and five soil variables were simultaneously measured.A single plow tillage accounted for approximately 54%–73%of the NO releases during the cropping period(CP);and the non-cropping period(NCP)contributed to 51%–58%of the annual emissions.The direct NO emissions factor(EFd)was 0.021%±0.021%.Significantly lower Q10 values(p<0.01)occurred in the F treatment during the CP(approximately 3.6)compared to those during the other period or in the other treatment(approximately 4.9?5.1),indicating a fertilizer-induced reduction in the temperature sensitivity.The selected soil variables jointly accounted for up to 72%(p<0.01)of the variance for all the fluxes across both treatments.This finding suggests that temporally and/or spatially distributed fluxes from alpine calcareous-soil ecosystems for feed crop production may be easily predicted if data on these soil variables are available.Further studies are needed to test the hypothesis that the EFd is larger in alpine feed-oat fields than those in this study if the soil moisture content is higher during the period following the basal application of ammoniumor urea-based fertilizer.展开更多
Emission factors of particulate matter (PM), element carbon (EC), organic carbon (OC), SO2, NOx, CO, CO2, and ten ions (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Fˉ, Clˉ, NO2ˉ, NO3ˉ, SO42ˉ) were estimated from...Emission factors of particulate matter (PM), element carbon (EC), organic carbon (OC), SO2, NOx, CO, CO2, and ten ions (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Fˉ, Clˉ, NO2ˉ, NO3ˉ, SO42ˉ) were estimated from the domestic burning of four types of commonly produced crop residues in rural China: rice straw, wheat straw, corn stover, and cotton stalk, which were collected from the representative regions across China. A combustion tower was designed to simulate the cooking conditions under which the peasants burned their crop residues in rural China, to measure the emission factors. Results showed that wheat straw had the highest emission factor for the total PM (8.75 g/kg) among the four crop residues, whereas, corn stover and wheat straw have the highest emission factor for EC (0.95 g/kg) and OC (3.46 g/kg), respectively. Corn stover also presents as having the highest emission factors of NO, NOx, and CO2, whereas, wheat straw, rice straw, and cotton stalk had the highest emission factors of NO2, SO2, and CO, respectively. The water-soluble ions, K^+ and Clˉ, had the highest emission factors from all the crops. Wheat straw had a relatively higher emission factor of cation species and Fˉ, Clˉ, NO2ˉ than other residues.展开更多
The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the ...The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.展开更多
Copper smelting is a significant source of SO2 emission. It is important to quantify SO2 emissions from combustion sources for regulatory and control purposes in relation to air quality. The characteristics of SO2 emi...Copper smelting is a significant source of SO2 emission. It is important to quantify SO2 emissions from combustion sources for regulatory and control purposes in relation to air quality. The characteristics of SO2 emissions from copper smelting industry in Yurman Province, China, were examined. Analysis based on the present situation, material balance and measuring method were used to confirm SO2 emission factors of copper smelting industry. Results show that SO2 emission factors for Isa system, side blown-continuous converting system (SB-CC), blast furnace-continuous converting systems (B-CC) and blast furnace-converter blowing (B-C) are 11.69-18.64, 62.44--101.4, 19.43-37.88 and 45.48-81.03 kg/t(blister copper), respectively. The comprehensive emission factor based on all smelting plants is found to be in the range of 23-39.99 kg-SO2/t(blister copper) for Yunnan Province, China. The results are compared with those for discharge coefficients of industrial pollutants in the First National General Survey of Pollution Sources and the emission factor of the total amount of major pollutants. It is observed that there are some differences among emission factors.展开更多
Quantification of greenhouse gases[nitrous oxide(N_(2)O)and methane(CH_(4))]and nitric oxide(NO)emissions from subtropical conventional vegetable systems through multi-site field measurements are needed to obtain accu...Quantification of greenhouse gases[nitrous oxide(N_(2)O)and methane(CH_(4))]and nitric oxide(NO)emissions from subtropical conventional vegetable systems through multi-site field measurements are needed to obtain accurate regional and global estimates.N2 O,NO and CH4 emissions from subtropical conventional vegetable systems were simultaneously measured at two different sites with hilly topography in the Sichuan basin,southwest China by using the static chamber gas chromatography technique.Results showed that annual soil N_(2)O and NO fluxes for the treatment receiving N fertilizer ranged from 6.34-7.71 kg N ha^(-1) yr^(-1) and 0.69-0.85 kg N ha^(-1) yr^(-1),respectively,while decreased soil CH4 uptakes by 26.4%as compared with no N fertilizer addition across our two sites of experiment.Overall,the average direct N2 O and NO emission factor(EFd)were 0.71%and 0.12%,respectively,which were both lower than the available EFd for subtropical conventional vegetable systems.This finding indicates that current regional and global estimates of N_(2)O and NO emissions from vegetable fields are likely overestimated.Background N_(2)O emissions(3.42-3.62 kg N ha^(-1) yr^(-1))from the subtropical conventional vegetable systems were relatively high as compared with available field measurements worldwide,suggesting that background N_(2)O emissions cannot be ignored for regional estimate of N_(2)O emissions in subtropical region.Nevertheless,the significantly intra-and inter-annual variations in N_(2)O,CH_(4) and NO emissions were also observed in the present study,which could be explained by temporal variations of environmental variables(i.e.soil temperature and moisture).The differences in N_(2)O and NO EFd and CH_(4)emissions between various vegetable systems in particular under subtropical conditions should be taken into account when compiling regional or global inventories and proposing mitigation practices.展开更多
This study was performed to estimate the emission of non-CO 2 greenhouse gases(GHGs) from biomass burning at a large fire area.The extended methodology adopted the IPCC Guidelines(2003) equation for use on data from t...This study was performed to estimate the emission of non-CO 2 greenhouse gases(GHGs) from biomass burning at a large fire area.The extended methodology adopted the IPCC Guidelines(2003) equation for use on data from the Samcheok forest fire gathered using 30 m resolution Landsat TM satellite imagery,digital forest type maps,and growing stock information per hectare by forest type in 1999.Normalized burn ratio(NBR) technique was employed to analyze the area and severity of the Samcheok forest fire that occurred in 2000.The differences between NBR from pre-and post-fire datasets are examined to determine the extent and degree of change detected from burning.The results of burn severity analysis by dNBR of the Samcheok forest fire area revealed that a total of 16,200 ha of forest were burned.The proportion of the area characterized by a 'Low' burn severity(dNBR below 152) was 35%,with 'Moderate'(dNBR 153-190) and 'High'(dNBR 191-255) areas were at 33% and 32%,respectively.The combustion efficiency for burn severity was calculated as 0.43 for crown fire where burn severity was 'High',as 0.40 for 'Moderate' severity,and 0.15 for 'Low' severity surface fire.The emission factors for estimating non-CO 2 GHGs were separately applied to CO 130,CH 4 9,NO x 0.7 and N 2 O 0.11.Non-CO 2 GHGs emissions from biomass burning in the Samcheok forest fire area were estimated to be CO 44.100,CH 4 3.053,NO x 0.238 and N 2 O 0.038 Gg.展开更多
The emission factors of nitrous oxide have been determined during the combustion of rice straws, maize stalks and wheat stalks in an enclosed combustion system. They equal to 84.4 ± 6.08g/t for rice straws,132...The emission factors of nitrous oxide have been determined during the combustion of rice straws, maize stalks and wheat stalks in an enclosed combustion system. They equal to 84.4 ± 6.08g/t for rice straws,132± 8.63g/t for maize stalks,and 27.3 ±1.79g/tfor wheat stalks,respectively. The uncertainties in the determination of nitrous oxide have been discussed. The N_2O-N(nitrogen in nitrous oxide emission)accounts for 0. 59% and 0. 87% of the total nitrogen in rice straws and maize stalks,respectively. An 1 ̄0 ×1 ̄0 grid map on the distribution of N_2O emission from biomass burning in China mainland was shown.展开更多
Emission factor is a measure of pollution intensities caused by economic activities, which can be used to assess potential for pollution reduection. With the emission factors derived based on relatively few datu point...Emission factor is a measure of pollution intensities caused by economic activities, which can be used to assess potential for pollution reduection. With the emission factors derived based on relatively few datu points or based on data collected from a specfic region, one can predict the total environmental pollution levels for the drire economy or for another region once the total leve of economic actvities of the concemed economy or region is known or prescribed. Moreover,research on emission factors can not only guide the decision-making process in choosing the best environmental protection strategy, but also be used as indicators. for the assessment and comparison of the environmentally sound development. In this paper, emission factors based on output and employment in different periods,provinces and industries are calculated, based on which temporal and spatial analyses of emission factors are carried out. Obvious declining trends of emission factors both by provinces and industries are declared, and the regional differentiation by provinces and industries is also verified.展开更多
Emission factors (EFs) of particulate matter (PM) derived from mono and co-firing of Thai lignite and agricultural residues have been investigated. Two sampling methods for PM, total filtration (TF) and electric...Emission factors (EFs) of particulate matter (PM) derived from mono and co-firing of Thai lignite and agricultural residues have been investigated. Two sampling methods for PM, total filtration (TF) and electrical low-pressure impactor (ELPI), were used together. The study is focused on the influence of fuel mass fraction, and of secondary air to total air; SA:TA on EFs of PM. The results have shown that EFs of PM in mass-basis given by TF method are 8.9, 5.3 and 8.1 mg/kgfuel, while 3.3, 2.7 and 3.3 mg/kgfuel when using ELPI, for firing at constant SA:TA (30%) of lignite, rice husk and bagasse, respectively. For co-firing with 30%SA of coal/rice husk, higher EFs of PM is observed. They are 7.17 and 10.9 mg/kgfuel (TF) for 40 and 70% rice husk share, respectively, or 4.18 and 5.19 mg/kgfuel (ELPI). However, lower PM emission; 1-3.3 mg/kgruel (TF) or 0.72-2.83 mg/kgfuel (ELPI) are obtained during co-firing of coal/rice husk with lower degree of air staging (i.e. 0-10% SA:TA). For the influence of oxygenation state, increasing of SA: TA leads to a low formation of ultrafine particles (Dp 〈 0.1 μm). Apart from PM, major gases (CO, NO, SO2) will be documented in this paper.展开更多
Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops spec...Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops specific emission factors in Mexico for: sulfur dioxide (SO2), nitrogen oxides (NOx) and particles, for thermoelectric power plants that use fuel oil. This work was necessary due to the differences found between the measured and the calculated emissions, using emission factors of different agencies, such as, US-EPA (Environmental Protection Agency of the United States), IPCC (Intergovernmental Panel on Climate Change), and UK-NAEI (National Atmospheric Emissions Inventory of the United Kingdom). The new emission factors were used to calculate the emissions of a thermoelectric power plant in Mexico. The comparisons between the measured and the calculated emissions (with the new emission factors) for 502, particles and NO2 were not significantly different (p 〉 0.05).展开更多
Eighty sites were set up to monitor road dust fall and 80 locations were selected to sample silt loading in April, August, and November 2007 and January 2008 in the Beijing metropolitan area. Fugitive road dust emissi...Eighty sites were set up to monitor road dust fall and 80 locations were selected to sample silt loading in April, August, and November 2007 and January 2008 in the Beijing metropolitan area. Fugitive road dust emission strengths were calculated using the AP-42 emission factor model. Silt loading on Beijing urban roads was typically less than 1.0 g/m^2, the PM10 emission strength was typically less than 100 kg/km·day, and road dust fall was typically less than 40 t/km^2·30day. The relationships between traffic volume, silt loading, fugitive road dust emission strength and road dust fall were studied in the Beijing metropolitan area. The results indicate that silt loading and emission factors are negatively correlated with traffic volume, but the PM10 emission rate and road dust-fall are positively correlated with traffic volume.展开更多
Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban tran...Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.展开更多
Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,met...Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.展开更多
文摘Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi.
基金funded by the Research and Innovation Action project BIO4AFRICA implemented under European Union Funding for Research&Innovation,EU HORIZON 2020(Grant Agreement No.101000762)。
文摘In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from peanut shells,cashew nut shells,and corn cobs were produced using wheat flour as a binder.The binder rate was set at 9%and 10%.Based on the energy performance parameters,it was highlighted that the char briquette from corn cob with 9%binder(Char_CC_9%)has the best energy performance,followed by the char briquette from peanut shells with 9%binder(Char_PNS_9%),and lastly,the char briquette from cashew nut shells with 10%binder(Char_CNS_10%).The average energy efficiency of the“jambar”stove was 15.68%,while that of the“Malgache”stove was 12.41%.The average specific fuel consumption of the“jambar”stove was 0.12 kg of fuel per kilogram of water while that of the“Malgache”stove was 0.15 kg of fuel per kilogram of water.In terms of gaseous emissions,CO(carbon monoxide)concentrations were very high for char briquettes from corn cobs,with a CO emission factor of 0.40 g/min and NOx emission factor of 9.79 mg/min.For char briquettes from cashew nut shells,CO and NOx emission factors were respectively 0.30 g/min and 5.32 mg/min.The lowest average concentrations were obtained with char briquettes from peanut shells with a CO emission factor of 0.25 g/min and NOx 3.98 mg/min.
基金This work was supported in part by the Science and Technology Project of State Grid Corporation of China(No.SGTYHT/14-JS-188).
文摘Reducing carbon emissions in the power sector is critical for transitioning to a sustainable and low-carbon future.Estimating carbon efficiency of demand side response(DSR)in the power system is an important step towards realizing potential environmental benefits.Marginal emission factor(MEF)is an effective tool for estimating incremental changes in carbon emissions as a result of a change in demand.However,estimation methods currently used for evaluating MEF can be improved upon,specifically,by factoring in the ramp-rate constraint of generators in the fuel cost based merit order dispatch.In this paper is described a new method for MEF assessment under ramp-rate constraints;the method is then compared with two conventional estimations in a British power system.Three fuel price scenarios are used to conduct a sensitivity analysis of MEFs to fuel prices.Conclusions are drawn that can pave the way for future improvements in estimating MEF in power systems.
基金This work was supported by the National Natural Science Foundation of China[grant number 41775154]the Six Talent Peaks Project in Jiangsu Province[grant number JNHB-057]the Postgraduate Practical Innovation Program of Jiangsu Province of China[grant number SJCX19_0301].
文摘A comprehensive agricultural inventory of ammonia emissions for 2017 in Hefei was established on the basis of the specific emission factors and county-level activity data.The emissions over a 1 km×1 km grid and the associated monthly variations were distributed on the basis of land-use type and meteorological conditions,respectively.The total ammonia emissions were 27,242.7 t in 2017 in Hefei,to which livestock was the top contributor,accounting for 54.5%.Two major contributors to livestock waste were broilers and laying hens,which contributed 34.5%and 22.2%of the total emissions,respectively.Changfeng,Feixi,and Feidong counties,with more developed agriculture than other counties,accounted for a large proportion of the total ammonia emissions—as much as 28.5%,24.5%,and 21.0%,respectively.The average emissions density of the whole region was 2.4 t km−2,and the higher values were mostly in areas with denser populations.Seasonally,peak ammonia emissions occurred in summer.
基金supported by the National Natural Science Foundation of China(51825802,52130803,52278020,and 72374121)the China National Key Research and Development Program(2018YFE0106100)+1 种基金the China Postdoctoral Science Foundation(2022M711815)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘The life-cycle assessment method,which originates from general products and services,has gradually come to be applied to investigations of the life-cycle carbon emissions(LCCE)of buildings.A literature review was conducted to clarify LCCE implications,calculations,and reductions in the context of buildings.A total of 826 global building carbon emission calculation cases were obtained from 161 studies based on the framework of the building life-cycle stage division stipulated by ISO 21930 and the basic principles of the emission factor(EF)approach.The carbon emission calculation methods and results are discussed herein,based on the modules of production,construction,use,end-of-life,and supplementary benefits.According to the hotspot distribution of a building’s carbon emissions,carbon reduction strategies are classified into six groups for technical content and benefits analysis,including reducing the activity data pertaining to building materials and energy,reducing the carbon EFs of the building materials and energy,and exploiting the advantages of supplementary benefits.The research gaps and challenges in current building LCCE studies are summarized in terms of research goals and ideas,calculation methods,basic parameters,and carbon reduction strategies;development suggestions are also proposed.
基金The authors thank the following for their financial support:the National Natural Science Foundation of China(51878062,72361137003)the Natural Science Foundation of Shaanxi Province,China(2020JM-246)the Fundamental Research Funds for the Central Universities of China,CHD(300102210214,300102343520).
文摘With the focus of highway development transitioning from construction to maintenance,a comprehensive understanding of the characteristics and influencing factors of carbon dioxide(CO_(2))emissions from highway maintenance activities is crucial for formulating effective strategies to promote the low-carbon development of road infrastructure.However,the quantitative relationships between CO_(2) emissions from highway maintenance schemes and factors such as pavement deterioration,traffic volume,and road grade remain unclear owing to a lack of compre-hensive,multi-category,and real data.Using real maintenance data from 340 arterial highway segments in China,this study conducts the life cycle assessment(LCA)to estimate CO_(2) emissions from maintenance activities and examines the primary emission sources among various structural layers and materials.Furthermore,multiple linear regression(MLR)analysis is conducted to investigate the impact of traffic volume,road grade,and pavement deterioration on CO_(2) emissions from maintenance projects,and factors influencing the early-stage degradation of pavement performance.The results demonstrate that average CO_(2) emissions from heavy rehabilitation projects are 6.97 times higher than those from medium rehabilitation projects.Emissions from heavy rehabilitation projects exhibit a significantly negative linear relationship with the riding quality index(RQI)before maintenance(p<0.05),and emissions from medium rehabilitation projects show a significant negative linear relationship with the pavement condition index(PCI)before maintenance(p<0.05).Emissions from heavy and medium rehabilitation projects are significantly positively correlated with heavy vehicle traffic volume before maintenance(p<0.05).Moreover,the early-stage degradation of PCI after heavy rehabilitation and RQI after medium rehabilitation exhibit significantly negative linear relationships with their respective in-dicators before maintenance(p<0.05).The early-stage degradation of RQI after heavy rehabilitation is significantly positively correlated with CO_(2) emissions from the base course and cushion layers(p<0.05).The findings emphasize that timely maintenance and reduction of CO_(2) emissions from asphalt mixing equipment are essential for mitigating emissions from road maintenance.This study offers valuable insights for advancing the low-carbon development of highways in temperate regions.
基金jointly financed by the Ministry of Science and Technology of China(Grant No.2016YFA0602303)the National Natural Science Foundation of China(Grant Nos.41775141,41375152,and 41603075)
文摘Nitric oxide(NO)emissions from alpine ecosystems conventionally being long-term cultivated with feed crops are not well quantified.The authors attempted to address this knowledge gap by performing a year-round experimental campaign in the northeastern Tibetan Plateau.Fertilized(F)and unfertilized(UF)treatments were established within a flat calcareous-soil site for the long-term cultivation of feed oats.NO fluxes and five soil variables were simultaneously measured.A single plow tillage accounted for approximately 54%–73%of the NO releases during the cropping period(CP);and the non-cropping period(NCP)contributed to 51%–58%of the annual emissions.The direct NO emissions factor(EFd)was 0.021%±0.021%.Significantly lower Q10 values(p<0.01)occurred in the F treatment during the CP(approximately 3.6)compared to those during the other period or in the other treatment(approximately 4.9?5.1),indicating a fertilizer-induced reduction in the temperature sensitivity.The selected soil variables jointly accounted for up to 72%(p<0.01)of the variance for all the fluxes across both treatments.This finding suggests that temporally and/or spatially distributed fluxes from alpine calcareous-soil ecosystems for feed crop production may be easily predicted if data on these soil variables are available.Further studies are needed to test the hypothesis that the EFd is larger in alpine feed-oat fields than those in this study if the soil moisture content is higher during the period following the basal application of ammoniumor urea-based fertilizer.
文摘Emission factors of particulate matter (PM), element carbon (EC), organic carbon (OC), SO2, NOx, CO, CO2, and ten ions (Na^+, NH4^+, K^+, Mg^2+, Ca^2+, Fˉ, Clˉ, NO2ˉ, NO3ˉ, SO42ˉ) were estimated from the domestic burning of four types of commonly produced crop residues in rural China: rice straw, wheat straw, corn stover, and cotton stalk, which were collected from the representative regions across China. A combustion tower was designed to simulate the cooking conditions under which the peasants burned their crop residues in rural China, to measure the emission factors. Results showed that wheat straw had the highest emission factor for the total PM (8.75 g/kg) among the four crop residues, whereas, corn stover and wheat straw have the highest emission factor for EC (0.95 g/kg) and OC (3.46 g/kg), respectively. Corn stover also presents as having the highest emission factors of NO, NOx, and CO2, whereas, wheat straw, rice straw, and cotton stalk had the highest emission factors of NO2, SO2, and CO, respectively. The water-soluble ions, K^+ and Clˉ, had the highest emission factors from all the crops. Wheat straw had a relatively higher emission factor of cation species and Fˉ, Clˉ, NO2ˉ than other residues.
文摘The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.
基金Projects(KKK0201022137,KKK0201122183) supported by the Special Research Foundation of Yunnan Provincial Environmental Protection Bureau,China
文摘Copper smelting is a significant source of SO2 emission. It is important to quantify SO2 emissions from combustion sources for regulatory and control purposes in relation to air quality. The characteristics of SO2 emissions from copper smelting industry in Yurman Province, China, were examined. Analysis based on the present situation, material balance and measuring method were used to confirm SO2 emission factors of copper smelting industry. Results show that SO2 emission factors for Isa system, side blown-continuous converting system (SB-CC), blast furnace-continuous converting systems (B-CC) and blast furnace-converter blowing (B-C) are 11.69-18.64, 62.44--101.4, 19.43-37.88 and 45.48-81.03 kg/t(blister copper), respectively. The comprehensive emission factor based on all smelting plants is found to be in the range of 23-39.99 kg-SO2/t(blister copper) for Yunnan Province, China. The results are compared with those for discharge coefficients of industrial pollutants in the First National General Survey of Pollution Sources and the emission factor of the total amount of major pollutants. It is observed that there are some differences among emission factors.
基金the Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2017ZX07101001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090403)National Key Research and Development Program(Grant No.2019YFD1100503)。
文摘Quantification of greenhouse gases[nitrous oxide(N_(2)O)and methane(CH_(4))]and nitric oxide(NO)emissions from subtropical conventional vegetable systems through multi-site field measurements are needed to obtain accurate regional and global estimates.N2 O,NO and CH4 emissions from subtropical conventional vegetable systems were simultaneously measured at two different sites with hilly topography in the Sichuan basin,southwest China by using the static chamber gas chromatography technique.Results showed that annual soil N_(2)O and NO fluxes for the treatment receiving N fertilizer ranged from 6.34-7.71 kg N ha^(-1) yr^(-1) and 0.69-0.85 kg N ha^(-1) yr^(-1),respectively,while decreased soil CH4 uptakes by 26.4%as compared with no N fertilizer addition across our two sites of experiment.Overall,the average direct N2 O and NO emission factor(EFd)were 0.71%and 0.12%,respectively,which were both lower than the available EFd for subtropical conventional vegetable systems.This finding indicates that current regional and global estimates of N_(2)O and NO emissions from vegetable fields are likely overestimated.Background N_(2)O emissions(3.42-3.62 kg N ha^(-1) yr^(-1))from the subtropical conventional vegetable systems were relatively high as compared with available field measurements worldwide,suggesting that background N_(2)O emissions cannot be ignored for regional estimate of N_(2)O emissions in subtropical region.Nevertheless,the significantly intra-and inter-annual variations in N_(2)O,CH_(4) and NO emissions were also observed in the present study,which could be explained by temporal variations of environmental variables(i.e.soil temperature and moisture).The differences in N_(2)O and NO EFd and CH_(4)emissions between various vegetable systems in particular under subtropical conditions should be taken into account when compiling regional or global inventories and proposing mitigation practices.
文摘This study was performed to estimate the emission of non-CO 2 greenhouse gases(GHGs) from biomass burning at a large fire area.The extended methodology adopted the IPCC Guidelines(2003) equation for use on data from the Samcheok forest fire gathered using 30 m resolution Landsat TM satellite imagery,digital forest type maps,and growing stock information per hectare by forest type in 1999.Normalized burn ratio(NBR) technique was employed to analyze the area and severity of the Samcheok forest fire that occurred in 2000.The differences between NBR from pre-and post-fire datasets are examined to determine the extent and degree of change detected from burning.The results of burn severity analysis by dNBR of the Samcheok forest fire area revealed that a total of 16,200 ha of forest were burned.The proportion of the area characterized by a 'Low' burn severity(dNBR below 152) was 35%,with 'Moderate'(dNBR 153-190) and 'High'(dNBR 191-255) areas were at 33% and 32%,respectively.The combustion efficiency for burn severity was calculated as 0.43 for crown fire where burn severity was 'High',as 0.40 for 'Moderate' severity,and 0.15 for 'Low' severity surface fire.The emission factors for estimating non-CO 2 GHGs were separately applied to CO 130,CH 4 9,NO x 0.7 and N 2 O 0.11.Non-CO 2 GHGs emissions from biomass burning in the Samcheok forest fire area were estimated to be CO 44.100,CH 4 3.053,NO x 0.238 and N 2 O 0.038 Gg.
文摘The emission factors of nitrous oxide have been determined during the combustion of rice straws, maize stalks and wheat stalks in an enclosed combustion system. They equal to 84.4 ± 6.08g/t for rice straws,132± 8.63g/t for maize stalks,and 27.3 ±1.79g/tfor wheat stalks,respectively. The uncertainties in the determination of nitrous oxide have been discussed. The N_2O-N(nitrogen in nitrous oxide emission)accounts for 0. 59% and 0. 87% of the total nitrogen in rice straws and maize stalks,respectively. An 1 ̄0 ×1 ̄0 grid map on the distribution of N_2O emission from biomass burning in China mainland was shown.
文摘Emission factor is a measure of pollution intensities caused by economic activities, which can be used to assess potential for pollution reduection. With the emission factors derived based on relatively few datu points or based on data collected from a specfic region, one can predict the total environmental pollution levels for the drire economy or for another region once the total leve of economic actvities of the concemed economy or region is known or prescribed. Moreover,research on emission factors can not only guide the decision-making process in choosing the best environmental protection strategy, but also be used as indicators. for the assessment and comparison of the environmentally sound development. In this paper, emission factors based on output and employment in different periods,provinces and industries are calculated, based on which temporal and spatial analyses of emission factors are carried out. Obvious declining trends of emission factors both by provinces and industries are declared, and the regional differentiation by provinces and industries is also verified.
文摘Emission factors (EFs) of particulate matter (PM) derived from mono and co-firing of Thai lignite and agricultural residues have been investigated. Two sampling methods for PM, total filtration (TF) and electrical low-pressure impactor (ELPI), were used together. The study is focused on the influence of fuel mass fraction, and of secondary air to total air; SA:TA on EFs of PM. The results have shown that EFs of PM in mass-basis given by TF method are 8.9, 5.3 and 8.1 mg/kgfuel, while 3.3, 2.7 and 3.3 mg/kgfuel when using ELPI, for firing at constant SA:TA (30%) of lignite, rice husk and bagasse, respectively. For co-firing with 30%SA of coal/rice husk, higher EFs of PM is observed. They are 7.17 and 10.9 mg/kgfuel (TF) for 40 and 70% rice husk share, respectively, or 4.18 and 5.19 mg/kgfuel (ELPI). However, lower PM emission; 1-3.3 mg/kgruel (TF) or 0.72-2.83 mg/kgfuel (ELPI) are obtained during co-firing of coal/rice husk with lower degree of air staging (i.e. 0-10% SA:TA). For the influence of oxygenation state, increasing of SA: TA leads to a low formation of ultrafine particles (Dp 〈 0.1 μm). Apart from PM, major gases (CO, NO, SO2) will be documented in this paper.
文摘Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops specific emission factors in Mexico for: sulfur dioxide (SO2), nitrogen oxides (NOx) and particles, for thermoelectric power plants that use fuel oil. This work was necessary due to the differences found between the measured and the calculated emissions, using emission factors of different agencies, such as, US-EPA (Environmental Protection Agency of the United States), IPCC (Intergovernmental Panel on Climate Change), and UK-NAEI (National Atmospheric Emissions Inventory of the United Kingdom). The new emission factors were used to calculate the emissions of a thermoelectric power plant in Mexico. The comparisons between the measured and the calculated emissions (with the new emission factors) for 502, particles and NO2 were not significantly different (p 〉 0.05).
文摘Eighty sites were set up to monitor road dust fall and 80 locations were selected to sample silt loading in April, August, and November 2007 and January 2008 in the Beijing metropolitan area. Fugitive road dust emission strengths were calculated using the AP-42 emission factor model. Silt loading on Beijing urban roads was typically less than 1.0 g/m^2, the PM10 emission strength was typically less than 100 kg/km·day, and road dust fall was typically less than 40 t/km^2·30day. The relationships between traffic volume, silt loading, fugitive road dust emission strength and road dust fall were studied in the Beijing metropolitan area. The results indicate that silt loading and emission factors are negatively correlated with traffic volume, but the PM10 emission rate and road dust-fall are positively correlated with traffic volume.
基金supported by Beijing Natural Science Foundation(J210001)Natural Science Foundation of Hebei Province(E2021210142)Tianjin Natural Science Foundation(21JCZXJC00160).
文摘Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.
基金supported partly by the National Key R&D Program of China(No.2022YFE029500)the National Natural Science Foundation of China(No.51637005)+1 种基金the S&T Program of Hebei(No.G2020502001)the Information Plan of Chinese Academy of Sciences(No.CAS-WX 2023PY-0103)。
文摘Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.