We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short ...We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source.展开更多
This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite meta...This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite metal-dielectric interface and the metal nanoparticles(NPs)of monomer/dimer configuration.In both configurations,sodium metals exhibit distinctly stronger coupling strength and lower optical loss in the optical region than their noble metal counterparts,demonstrating the ideal candidate characteristics for single-molecule-level strong couplings with distinctly facile operation conditions.Our results provide new insights into extreme light-matter interactions with potential applications in quantum information,optical sensors,quantum chemistry,etc.展开更多
An ultra-high-speed, master-slave voltage comparator circuit is designed and fabricated using InP/GaInAs double heterojunction bipolar transistor technology with a current gain cutoff frequency of 170 GHz. The complet...An ultra-high-speed, master-slave voltage comparator circuit is designed and fabricated using InP/GaInAs double heterojunction bipolar transistor technology with a current gain cutoff frequency of 170 GHz. The complete chip die, including bondpads, is 0.75 × 1.04 mm22. It consumes 440 mW from a single M V power supply, excluding the clock part. 77 DHBTs have been used in the monolithic comparator. A full Nyquist test has been performed up to 20 GHz, with the input sensitivity varying from 6 mV at l0 GHz to 16 mV at 20 GHz. To our knowledge, this is the first InP based integrated circuit including more than 70 DHBTs, and it achieves the highest sampling rate found on the mainland of China.展开更多
A new explanation of quaternary Q gate expression in Post algebra is given in this paper by using transmission function theory proposed in [1] and the quaternary ECL Q gate circuit is de- signed.The SPICE2 simulation ...A new explanation of quaternary Q gate expression in Post algebra is given in this paper by using transmission function theory proposed in [1] and the quaternary ECL Q gate circuit is de- signed.The SPICE2 simulation to this circuit has confirmed that it has desired logical function and is totally compatible with various quaternary ECL circuits proposed before.展开更多
基金Project supported by the National Natural Science Foundation of China(Grand Nos.91021009,21073110,and 11374191)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2013AQ020)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2013M531584)the Doctoral Program of Higher Education of China(Grant Nos.20130131110005 and 20130131120006)the Taishan Scholarship Project of Shandong Province,China
文摘We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400700)the National Natural Science Foundation of China(Grant Nos.12075205,62375123,and 12022403)。
文摘This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite metal-dielectric interface and the metal nanoparticles(NPs)of monomer/dimer configuration.In both configurations,sodium metals exhibit distinctly stronger coupling strength and lower optical loss in the optical region than their noble metal counterparts,demonstrating the ideal candidate characteristics for single-molecule-level strong couplings with distinctly facile operation conditions.Our results provide new insights into extreme light-matter interactions with potential applications in quantum information,optical sensors,quantum chemistry,etc.
文摘An ultra-high-speed, master-slave voltage comparator circuit is designed and fabricated using InP/GaInAs double heterojunction bipolar transistor technology with a current gain cutoff frequency of 170 GHz. The complete chip die, including bondpads, is 0.75 × 1.04 mm22. It consumes 440 mW from a single M V power supply, excluding the clock part. 77 DHBTs have been used in the monolithic comparator. A full Nyquist test has been performed up to 20 GHz, with the input sensitivity varying from 6 mV at l0 GHz to 16 mV at 20 GHz. To our knowledge, this is the first InP based integrated circuit including more than 70 DHBTs, and it achieves the highest sampling rate found on the mainland of China.
基金The subject is supported by Zhejiang Provincial Natural Science Foundation.
文摘A new explanation of quaternary Q gate expression in Post algebra is given in this paper by using transmission function theory proposed in [1] and the quaternary ECL Q gate circuit is de- signed.The SPICE2 simulation to this circuit has confirmed that it has desired logical function and is totally compatible with various quaternary ECL circuits proposed before.