期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
民生话题下政务微博评论Emotion-Cause Pair抽取方法研究
1
作者 王昊 虞为 +1 位作者 孟镇 张卫 《情报科学》 CSSCI 北大核心 2023年第12期136-146,共11页
【目的/意义】微博已成为政府部门与公众间互动的一个重要途径,针对政务微博进行细粒度的情感和原因分析有利于提高政府部门舆情治理能力,为此本文提出一套政务微博评论Emotion-Cause Pair抽取架构。【方法/过程】本文在定义Emotion&... 【目的/意义】微博已成为政府部门与公众间互动的一个重要途径,针对政务微博进行细粒度的情感和原因分析有利于提高政府部门舆情治理能力,为此本文提出一套政务微博评论Emotion-Cause Pair抽取架构。【方法/过程】本文在定义Emotion&Cause共现句侦测任务的基础上,基于文本分类模型识别出E&C共现句,构建GATECPE模型抽取Emotion-Cause Pair,并通过模型迁移和微调手段减少数据标注。【结果/结论】经过多个数据集验证,Emotion&Cause共现句侦测阶段识别P值在70%以上,Emotion-Cause Pair抽取阶段识别F1值在60%以上。通过模型微调可以有效缓解模型直接迁移产生的效果下降,本文提出的情感原因抽取流程可以有效抽取出政务微博评论的情感原因。【创新/局限】实验数据来源受限,Emotion&Cause共现句侦测和Emotion-Cause Pair抽取两阶段存在误差传播。 展开更多
关键词 政务微博 文本分类 emotion-cause Pair Extraction BERT 情感分析
原文传递
Pairwise tagging framework for end-to-end emotion-cause pair extraction 被引量:1
2
作者 Zhen WU Xinyu DAI Rui XIA 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第2期111-120,共10页
Emotion-cause pair extraction(ECPE)aims to extract all the pairs of emotions and corresponding causes in a document.It generally contains three subtasks,emotions extraction,causes extraction,and causal relations detec... Emotion-cause pair extraction(ECPE)aims to extract all the pairs of emotions and corresponding causes in a document.It generally contains three subtasks,emotions extraction,causes extraction,and causal relations detection between emotions and causes.Existing works adopt pipelined approaches or multi-task learning to address the ECPE task.However,the pipelined approaches easily suffer from error propagation in real-world scenarios.Typical multi-task learning cannot optimize all tasks globally and may lead to suboptimal extraction results.To address these issues,we propose a novel framework,Pairwise Tagging Framework(PTF),tackling the complete emotion-cause pair extraction in one unified tagging task.Unlike prior works,PTF innovatively transforms all subtasks of ECPE,i.e.,emotions extraction,causes extraction,and causal relations detection between emotions and causes,into one unified clause-pair tagging task.Through this unified tagging task,we can optimize the ECPE task globally and extract more accurate emotion-cause pairs.To validate the feasibility and effectiveness of PTF,we design an end-to-end PTF-based neural network and conduct experiments on the ECPE benchmark dataset.The experimental results show that our method outperforms pipelined approaches significantly and typical multi-task learning approaches. 展开更多
关键词 emotion-cause pair extraction pairwise tagging framework END-TO-END neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部