Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying ac...Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.展开更多
The multivariate linear errors-in-variables model when the regressors are missing at random in the sense of Rubin (1976) is considered in this paper. A constrained empirical likelihood confidence region for a parame...The multivariate linear errors-in-variables model when the regressors are missing at random in the sense of Rubin (1976) is considered in this paper. A constrained empirical likelihood confidence region for a parameter β0 in this model is proposed, which is constructed by combining the score function corresponding to the weighted squared orthogonal distance based on inverse probability with a constrained region of β0. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the coverage rate of the proposed confidence region is closer to the nominal level and the length of confidence interval is narrower than those of the normal approximation of inverse probability weighted adjusted least square estimator in most cases. A real example is studied and the result supports the theory and simulation's conclusion.展开更多
This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the ...This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the missing response variables by regression method. Then, the empirical likelihood method is introduced to study the heteroscedasticity of the semiparametric varying-coefficient partially linear models with complete-case data. Finally, the authors obtain the finite sample property by numerical simulation.展开更多
Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses clo...Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation(MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic(ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.展开更多
Qin and Lawless (1994) established the statistical inference theory for the empirical likelihood of the general estimating equations. However, in many practical problems, some unknown functional parts h(t) appear in t...Qin and Lawless (1994) established the statistical inference theory for the empirical likelihood of the general estimating equations. However, in many practical problems, some unknown functional parts h(t) appear in the corresponding estimating equations EFG(X, h(T), β) = 0. In this paper, the empirical likelihood inference of combining information about unknown parameters and distribution function through the semiparametric estimating equations are developed, and the corresponding Wilk's theorem is established. The simulations of several useful models are conducted to compare the finite-sample performance of the proposed method and that of the normal approximation based method. An illustrated real example is also presented.展开更多
Generalized linear models are usually adopted to model the discrete or nonnegative responses.In this paper,empirical likelihood inference for fixed design generalized linear models with longitudinal data is investigat...Generalized linear models are usually adopted to model the discrete or nonnegative responses.In this paper,empirical likelihood inference for fixed design generalized linear models with longitudinal data is investigated.Under some mild conditions,the consistency and asymptotic normality of the maximum empirical likelihood estimator are established,and the asymptotic χ^(2) distribution of the empirical log-likelihood ratio is also obtained.Compared with the existing results,the new conditions are more weak and easy to verify.Some simulations are presented to illustrate these asymptotic properties.展开更多
基金This work is supported by NNSF of China (10571093)
文摘Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.
基金supported by the Natural Science Foundation of China under Grant Nos.10771017 and 11071022Key Project of MOE,PRC under Grant No.309007
文摘The multivariate linear errors-in-variables model when the regressors are missing at random in the sense of Rubin (1976) is considered in this paper. A constrained empirical likelihood confidence region for a parameter β0 in this model is proposed, which is constructed by combining the score function corresponding to the weighted squared orthogonal distance based on inverse probability with a constrained region of β0. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the coverage rate of the proposed confidence region is closer to the nominal level and the length of confidence interval is narrower than those of the normal approximation of inverse probability weighted adjusted least square estimator in most cases. A real example is studied and the result supports the theory and simulation's conclusion.
基金supported by the National Natural Science Foundation of China under Grant Nos. 11471060 and 11871124the Key Project of Statistical Science of China under Grant No. 2017LZ27。
文摘This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the missing response variables by regression method. Then, the empirical likelihood method is introduced to study the heteroscedasticity of the semiparametric varying-coefficient partially linear models with complete-case data. Finally, the authors obtain the finite sample property by numerical simulation.
基金supported by the National Natural Science Foundation of China under Grant No.11101452the Natural Science Foundation Project of CQ CSTC under Grant No.2012jjA00035the National Basic Research Program of China under Grant No.2011CB808000
文摘Empirical likelihood(EL) combined with estimating equations(EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation(MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation(MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic(ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.
基金supported partly by National Natural Science Foundation of China (Grant Nos. 11071022, 11028103 and 11201317)Key Project of Ministry of Education of China (Grant No. 309007)National High-tech R&D Program of China (Grant No. 2008AA12Z107)
文摘Qin and Lawless (1994) established the statistical inference theory for the empirical likelihood of the general estimating equations. However, in many practical problems, some unknown functional parts h(t) appear in the corresponding estimating equations EFG(X, h(T), β) = 0. In this paper, the empirical likelihood inference of combining information about unknown parameters and distribution function through the semiparametric estimating equations are developed, and the corresponding Wilk's theorem is established. The simulations of several useful models are conducted to compare the finite-sample performance of the proposed method and that of the normal approximation based method. An illustrated real example is also presented.
基金supported by the Natural Science Foundation of China under Grant Nos.12031016,11061002,11801033,12071014 and 12131001the National Social Science Fund of China under Grant No.19ZDA121the Natural Science Foundation of Guangxi under Grant Nos.2015GXNSFAA139006 and LMEQF。
文摘Generalized linear models are usually adopted to model the discrete or nonnegative responses.In this paper,empirical likelihood inference for fixed design generalized linear models with longitudinal data is investigated.Under some mild conditions,the consistency and asymptotic normality of the maximum empirical likelihood estimator are established,and the asymptotic χ^(2) distribution of the empirical log-likelihood ratio is also obtained.Compared with the existing results,the new conditions are more weak and easy to verify.Some simulations are presented to illustrate these asymptotic properties.