Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found...Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found that the true stress-true strain curves exhibit peak stress at a small strain, and the peak stress increases with the increase of initial δ phase. After the peak stress, initial δ phase promotes the dynamic softening behaviors, resulting in the decreased flow stress. An improved Arrhenius constitutive model is proposed to consider the synthetical effects of initial δ phase, deformation temperature, strain rate, and strain on hot deformation behaviors. In the improved model, material constants are expressed as the functions of the content of initial δ phase and strain. A good agreement between the predicted and measured results indicates that the improved Arrhenius constitutive model can well describe hot deformation behaviors of the studied Ni-based superalloy.展开更多
Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical com...Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.展开更多
This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a pr...This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or s...Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or spinpolarized density functional theory(DFT)served as the primary models for describing interatomic interactions in atomistic simulations of magnetic systems.Furthermore,in recent years,a new class of interatomic potentials known as magnetic machine-learning interatomic potentials(magnetic MLIPs)has emerged.These MLIPs combine the computational efficiency,in terms of CPU time,of empirical potentials with the accuracy of DFT calculations.In this review,our focus lies on providing a comprehensive summary of the interatomic interaction models developed specifically for investigating magnetic materials.We also delve into the various problem classes to which these models can be applied.Finally,we offer insights into the future prospects of interatomic interaction model development for the exploration of magnetic materials.展开更多
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the...The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.展开更多
In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room ...In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions.展开更多
Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nan...Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nano-tubes(CNTs),graphene,carbon black(CB)and ultimately,sustainable porous carbon(SPC).Here,black wattle bark waste(following tannin extraction)was used as a sustainable source to produce SPC made from biomass waste.It was characterized and used as afiller for a silicone rubber matrix to produce aflexible RAM.The elec-tromagnetic performance of this composite was compared with composites made with commercial CB and CNT through reflection loss(RL),where-10 dB is equivalent to 90%of attenuation.These composites were evaluated in single-layer,double-layer,and as radar absorbing structures(RAS)with the aim of improving their effective absorption bandwidth(EAB)performances and a reduction in costs.The CNT composite presented a RL of-26.85 dB at 10.89 GHz and an EAB of 2.6 GHz with a 1.9 mm thickness,while the double-layer structures using CNT and SPC provided a RL of-19.74 dB at 10.75 GHz and an EAB of 2.51 GHz.Furthermore,the double-layer structures are~42%cheaper than the composite using only CNT since less material is used.Finally,the largest EAB was achieved with a RAS using SPC,reaching~2.8 GHz and a RL of-49.09 dB at 10.4 GHz.Summarizing,SPC made of black wattle bark waste can be a competitive,alternative material for use as RAM and RAS since it is cheaper,sustainable,and suitable for daily life uses such as absorbers for anechoic chambers,sensors,and elec-tromagnetic interference shields for electronics,wallets,vehicles,and others.展开更多
The dielectric constant(DC)is one of the key properties for detection of threat materials such as Improvised Explosive Devices(IEDs).In the present paper,the density functional theory(DFT)as well as ab-initio approach...The dielectric constant(DC)is one of the key properties for detection of threat materials such as Improvised Explosive Devices(IEDs).In the present paper,the density functional theory(DFT)as well as ab-initio approaches are used to explore effective methods to predict dielectric constants of a series of 12 energetic materials(EMs)for which experimental data needed to experimentally determine the dielectric constant(refractive indices)are available.These include military grades energetic materials,nitro and peroxide compounds,and the widely used nitroglycerin.Ab-initio and DFT calculations are conducted.In order to calculate dielectric constant values of materials,potential DFT functional combined with basis sets are considered for testing.Accuracy of the calculations are compared to experimental data listed in the scientific literature,and time required for calculations are both evaluated and discussed.The best functional/basis set combinations among those tested are CAM-B3LYP and AUG-ccpVDZm,which provide great results,with accuracy deviations below 5%when calculated results are compared to experimental data.展开更多
The isothermal compression test at elevated temperature was carried out for aluminum sheets prepared by different melt-treatment methods with aid of dynamic hot/mechanical simulation experimental technology. The mater...The isothermal compression test at elevated temperature was carried out for aluminum sheets prepared by different melt-treatment methods with aid of dynamic hot/mechanical simulation experimental technology. The material constants of hot deformation have been solved by multivariate regression directly. Influence of metallurgy factors on the constants was analyzed. The results show that at some strain, the relationship of sheets’ flow stress with deformation temperature and strain rate can be expressed more suitably with Arrhenius equation modified by hyperbolic sine function. Structure factor A1, stress-level coefficient α, strain rate sensibility exponent m and deformation activation energy Q all increase with increment of strain, while stress exponent n decreases gradually. The bigger α value or the smaller n value is, the more obvious the dynamic softening is, but the α value will increase for the metallurgy defects existing in the sheets. Influence of melt-treatment on Q depends upon the synthesis effect of all kinds of metallurgy defects. The Q and n values of the sheet prepared by high-efficient melt-treatment are the least, while the m value is the biggest, and the sheet can deform easily and evenly.展开更多
Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture b...Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture behaviors to elastic-plastic steels contained flaws, to put forward several calculation models, which are the driving force and the life prediction expressions at each stage and in whole process; for the key parameters .A1 and ,A2 in two stages, there are functional relation with other conventional material constants σF,m1 and M2,λ2, they are defined as the new calculable comprehensive material constants, and indicate their physical and geometrical meanings. In addition, for conversion methods between two types of variables, relevant calculating example is provided. Thereby, make a linking between the fracture mechanics and the damage mechanics, communicating their relationships. This works for saving man powers and funds on fatigue-damage-fracture testing that will be having practical significance.展开更多
The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size o...The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.展开更多
The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants...The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants (k is extinction coefficient and n is refractive index ) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied, and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values, and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that : ( 1 ) based on transmittance spectrograms of double slabs in which thickness of single slab is the same, the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger, but inversed calculation precision of optical constants are higher in most application ranges ; ( 3 ) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent distinctness.展开更多
A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fi...A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies.展开更多
High dielectric constant (high-k) materials are vital to the nanoelectronic devices. The paper reviews research development of high-k materials, describes a variety of manufacture technologies and discusses the applic...High dielectric constant (high-k) materials are vital to the nanoelectronic devices. The paper reviews research development of high-k materials, describes a variety of manufacture technologies and discusses the application of the gate stack systems to non-classical device structures.展开更多
Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss fa...Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A.展开更多
To increase the detectability of split Hopkinson pressure bar (SHPB) of low-impedance materials, modifications were conducted on traditional SHPB apparatus with a PMMA tube to output transmitted signal, and weak sig...To increase the detectability of split Hopkinson pressure bar (SHPB) of low-impedance materials, modifications were conducted on traditional SHPB apparatus with a PMMA tube to output transmitted signal, and weak signals were further amplified by semiconductor strain gauges. Experiments on soft rubbers and cushioning foam materials were carried out. In order to analyze the accuracy of the experimental results, the stress equilibrium issues involved in the assumptions of SHPB were investigated. First, by way of re-constructing loading process of incident wave, the stress- strain curve was obtained, along with the stress equilibrium ratio of specimen. Secondly, the influences on the accuracy of stress-strain curves were investigated through the elastic modulus comparisons. And the results illustrate that the bilinear incident wave from experiments can ensure the stress equilibrium deformation of specimen after 2 normalized times, much sooner than ramp incident waves. Moreover, it even facilitates specimen deformation with a constant strain rate. The results confirm that the detectability of the modified SHPB can be down to tens kPa with enough accuracy level.展开更多
Based on the standpoint to take for the crack size also to be a damage variable like the damage variable, by means of the two-directions coordinate system, several new calculation equations on the small crack gro...Based on the standpoint to take for the crack size also to be a damage variable like the damage variable, by means of the two-directions coordinate system, several new calculation equations on the small crack growth rate are suggested for describing the elastic-plastic behavior of some metallic materials. And the estimation formulas of life are also suggested relative to varied small crack size at each loading history, which is unsymmetric cyclic loading. In the calculation method, as a loaded stress-strain parameter to adopt the ratio with plastic strain range to elastic strain range, and as the material constants using the typical material parameters in damage calculation expression, a new concept of the compositive material constant, which has functional relation with the typical material constants, average stress, average strain, critical loading time is given out. In addition, the fatigue damage of a part of car is put up to calculate as an example, its calculation results are accordant with the Landgraf's equation, and calculation precision is more rigorous, so could avoid unnecessary fatigue tests and will be of practical significance on saving times, manpower and capitals, as well as the convenience for engineering applications.展开更多
Several new calculating equations on the damage-evolving rate are suggested for describing the elastic-plastic behavior of some materials under un-symmetric cyclic loading. And the estimating formulas are given of th...Several new calculating equations on the damage-evolving rate are suggested for describing the elastic-plastic behavior of some materials under un-symmetric cyclic loading. And the estimating formulas are given of the life relative to varied damage value D oi at each loading history. The method is to adopt the ratio of plastic strain range to elastic strain range as the stress-strain parameter, using the staple material constants as the material parameters in damage calculating expression. And it gives out a new concept of the compositive material constant, that has a functional relation with the staple material constants, average stress,average strain and critical loading time. In addition, it calculates fatigue damage as example for a part of car, its calculating results are accordant with the Landgraf’s equation, and calculating precision is more rigorous, so could avoid unnecessary fatigue tests and will be of practical significance to stint times, manpower and capitals, and to provide convenience for engineering applications.展开更多
Air-stripping method was used to remove ammonia from the wastewater collected from natural gas fertilizer factory. Different materials were used as packing materials for the air stripping system. The effect of pH over...Air-stripping method was used to remove ammonia from the wastewater collected from natural gas fertilizer factory. Different materials were used as packing materials for the air stripping system. The effect of pH over 10.5, air-water flow ratio, nature of packing materials, height of materials and initial influent concentration of ammonia on air stripping unit were investigated. An attempt has been made to find out the stripping con-stant. Stripping constant was found to be .001, 0014, .001 and .0009 for coal, plastic ring, stone chips and wood chips, respectively. Best result was found for plastic ring for its higher surface area. Wood chips did not give good result, because the chips amalgamate with each other and hence reduces the surface area.展开更多
基金Projects(5137550251305466) supported by the National Natural Science Foundation of China+2 种基金Project(2015CX002) supported by the Innovation-driven Plan in Central South University,ChinaProject(2013CB035801) supported by the National Basic Research Program of ChinaProject(2015NGQ001) supported by Key Laboratory of Efficient&Clean Energy Utilization,College of Hunan Province,China
文摘Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found that the true stress-true strain curves exhibit peak stress at a small strain, and the peak stress increases with the increase of initial δ phase. After the peak stress, initial δ phase promotes the dynamic softening behaviors, resulting in the decreased flow stress. An improved Arrhenius constitutive model is proposed to consider the synthetical effects of initial δ phase, deformation temperature, strain rate, and strain on hot deformation behaviors. In the improved model, material constants are expressed as the functions of the content of initial δ phase and strain. A good agreement between the predicted and measured results indicates that the improved Arrhenius constitutive model can well describe hot deformation behaviors of the studied Ni-based superalloy.
文摘Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.
基金supported by the National Natural Science Foundation of China(61803370,61622309)the China Postdoctoral Science Foundation(2018M630216)the National Key Research and Development Program of China(2016YFB0901902)
文摘This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
基金supported by Russian Science Foundation(Grant No.22-73-10206,https://rscf.ru/project/22-73-10206/)。
文摘Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or spinpolarized density functional theory(DFT)served as the primary models for describing interatomic interactions in atomistic simulations of magnetic systems.Furthermore,in recent years,a new class of interatomic potentials known as magnetic machine-learning interatomic potentials(magnetic MLIPs)has emerged.These MLIPs combine the computational efficiency,in terms of CPU time,of empirical potentials with the accuracy of DFT calculations.In this review,our focus lies on providing a comprehensive summary of the interatomic interaction models developed specifically for investigating magnetic materials.We also delve into the various problem classes to which these models can be applied.Finally,we offer insights into the future prospects of interatomic interaction model development for the exploration of magnetic materials.
基金supported by China Southern Power Grid Science and Technology Innovation Research Project(000000KK52220052).
文摘The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.
基金the financial support from National Natural Science Foundation of China(No.51976093)K C Wong Magna Fund in Ningbo University。
文摘In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions.
文摘Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nano-tubes(CNTs),graphene,carbon black(CB)and ultimately,sustainable porous carbon(SPC).Here,black wattle bark waste(following tannin extraction)was used as a sustainable source to produce SPC made from biomass waste.It was characterized and used as afiller for a silicone rubber matrix to produce aflexible RAM.The elec-tromagnetic performance of this composite was compared with composites made with commercial CB and CNT through reflection loss(RL),where-10 dB is equivalent to 90%of attenuation.These composites were evaluated in single-layer,double-layer,and as radar absorbing structures(RAS)with the aim of improving their effective absorption bandwidth(EAB)performances and a reduction in costs.The CNT composite presented a RL of-26.85 dB at 10.89 GHz and an EAB of 2.6 GHz with a 1.9 mm thickness,while the double-layer structures using CNT and SPC provided a RL of-19.74 dB at 10.75 GHz and an EAB of 2.51 GHz.Furthermore,the double-layer structures are~42%cheaper than the composite using only CNT since less material is used.Finally,the largest EAB was achieved with a RAS using SPC,reaching~2.8 GHz and a RL of-49.09 dB at 10.4 GHz.Summarizing,SPC made of black wattle bark waste can be a competitive,alternative material for use as RAM and RAS since it is cheaper,sustainable,and suitable for daily life uses such as absorbers for anechoic chambers,sensors,and elec-tromagnetic interference shields for electronics,wallets,vehicles,and others.
文摘The dielectric constant(DC)is one of the key properties for detection of threat materials such as Improvised Explosive Devices(IEDs).In the present paper,the density functional theory(DFT)as well as ab-initio approaches are used to explore effective methods to predict dielectric constants of a series of 12 energetic materials(EMs)for which experimental data needed to experimentally determine the dielectric constant(refractive indices)are available.These include military grades energetic materials,nitro and peroxide compounds,and the widely used nitroglycerin.Ab-initio and DFT calculations are conducted.In order to calculate dielectric constant values of materials,potential DFT functional combined with basis sets are considered for testing.Accuracy of the calculations are compared to experimental data listed in the scientific literature,and time required for calculations are both evaluated and discussed.The best functional/basis set combinations among those tested are CAM-B3LYP and AUG-ccpVDZm,which provide great results,with accuracy deviations below 5%when calculated results are compared to experimental data.
基金Project(JA04251) supported by the Education Department of Fujian Province, China Project(E0210011) supported by the Natural Science Foundation of Fujian Province, China
文摘The isothermal compression test at elevated temperature was carried out for aluminum sheets prepared by different melt-treatment methods with aid of dynamic hot/mechanical simulation experimental technology. The material constants of hot deformation have been solved by multivariate regression directly. Influence of metallurgy factors on the constants was analyzed. The results show that at some strain, the relationship of sheets’ flow stress with deformation temperature and strain rate can be expressed more suitably with Arrhenius equation modified by hyperbolic sine function. Structure factor A1, stress-level coefficient α, strain rate sensibility exponent m and deformation activation energy Q all increase with increment of strain, while stress exponent n decreases gradually. The bigger α value or the smaller n value is, the more obvious the dynamic softening is, but the α value will increase for the metallurgy defects existing in the sheets. Influence of melt-treatment on Q depends upon the synthesis effect of all kinds of metallurgy defects. The Q and n values of the sheet prepared by high-efficient melt-treatment are the least, while the m value is the biggest, and the sheet can deform easily and evenly.
文摘Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture behaviors to elastic-plastic steels contained flaws, to put forward several calculation models, which are the driving force and the life prediction expressions at each stage and in whole process; for the key parameters .A1 and ,A2 in two stages, there are functional relation with other conventional material constants σF,m1 and M2,λ2, they are defined as the new calculable comprehensive material constants, and indicate their physical and geometrical meanings. In addition, for conversion methods between two types of variables, relevant calculating example is provided. Thereby, make a linking between the fracture mechanics and the damage mechanics, communicating their relationships. This works for saving man powers and funds on fatigue-damage-fracture testing that will be having practical significance.
文摘The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51176038 and 51106036)
文摘The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants (k is extinction coefficient and n is refractive index ) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied, and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values, and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that : ( 1 ) based on transmittance spectrograms of double slabs in which thickness of single slab is the same, the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger, but inversed calculation precision of optical constants are higher in most application ranges ; ( 3 ) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent distinctness.
基金Project supported by the National Natural Science Foundation of China(Nos.10472045,10772078, and 11072108)the National High-Tech Research and Development Program of China(863 Program) (No.2007AA11Z106)
文摘A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies.
文摘High dielectric constant (high-k) materials are vital to the nanoelectronic devices. The paper reviews research development of high-k materials, describes a variety of manufacture technologies and discusses the application of the gate stack systems to non-classical device structures.
基金Project supported by the National Defense Foundation of China(Grant No.9149A12050414JW02180)
文摘Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A.
基金Supported by the National Natural Science Foundation(11272267,11102168,10932008)111 Project(B07050)
文摘To increase the detectability of split Hopkinson pressure bar (SHPB) of low-impedance materials, modifications were conducted on traditional SHPB apparatus with a PMMA tube to output transmitted signal, and weak signals were further amplified by semiconductor strain gauges. Experiments on soft rubbers and cushioning foam materials were carried out. In order to analyze the accuracy of the experimental results, the stress equilibrium issues involved in the assumptions of SHPB were investigated. First, by way of re-constructing loading process of incident wave, the stress- strain curve was obtained, along with the stress equilibrium ratio of specimen. Secondly, the influences on the accuracy of stress-strain curves were investigated through the elastic modulus comparisons. And the results illustrate that the bilinear incident wave from experiments can ensure the stress equilibrium deformation of specimen after 2 normalized times, much sooner than ramp incident waves. Moreover, it even facilitates specimen deformation with a constant strain rate. The results confirm that the detectability of the modified SHPB can be down to tens kPa with enough accuracy level.
文摘Based on the standpoint to take for the crack size also to be a damage variable like the damage variable, by means of the two-directions coordinate system, several new calculation equations on the small crack growth rate are suggested for describing the elastic-plastic behavior of some metallic materials. And the estimation formulas of life are also suggested relative to varied small crack size at each loading history, which is unsymmetric cyclic loading. In the calculation method, as a loaded stress-strain parameter to adopt the ratio with plastic strain range to elastic strain range, and as the material constants using the typical material parameters in damage calculation expression, a new concept of the compositive material constant, which has functional relation with the typical material constants, average stress, average strain, critical loading time is given out. In addition, the fatigue damage of a part of car is put up to calculate as an example, its calculation results are accordant with the Landgraf's equation, and calculation precision is more rigorous, so could avoid unnecessary fatigue tests and will be of practical significance on saving times, manpower and capitals, as well as the convenience for engineering applications.
文摘Several new calculating equations on the damage-evolving rate are suggested for describing the elastic-plastic behavior of some materials under un-symmetric cyclic loading. And the estimating formulas are given of the life relative to varied damage value D oi at each loading history. The method is to adopt the ratio of plastic strain range to elastic strain range as the stress-strain parameter, using the staple material constants as the material parameters in damage calculating expression. And it gives out a new concept of the compositive material constant, that has a functional relation with the staple material constants, average stress,average strain and critical loading time. In addition, it calculates fatigue damage as example for a part of car, its calculating results are accordant with the Landgraf’s equation, and calculating precision is more rigorous, so could avoid unnecessary fatigue tests and will be of practical significance to stint times, manpower and capitals, and to provide convenience for engineering applications.
文摘Air-stripping method was used to remove ammonia from the wastewater collected from natural gas fertilizer factory. Different materials were used as packing materials for the air stripping system. The effect of pH over 10.5, air-water flow ratio, nature of packing materials, height of materials and initial influent concentration of ammonia on air stripping unit were investigated. An attempt has been made to find out the stripping con-stant. Stripping constant was found to be .001, 0014, .001 and .0009 for coal, plastic ring, stone chips and wood chips, respectively. Best result was found for plastic ring for its higher surface area. Wood chips did not give good result, because the chips amalgamate with each other and hence reduces the surface area.