This study presents an analysis of the spectral characteristics of remote sensing reflectance(Rrs)in northwestern South China Sea based on the in situ optical and water quality data for August 2018.Rrswas initially di...This study presents an analysis of the spectral characteristics of remote sensing reflectance(Rrs)in northwestern South China Sea based on the in situ optical and water quality data for August 2018.Rrswas initially divided into four classes,classes A to D,using the max-classification algorithm,and the spectral properties of whole Rrs were characterized using the empirical orthogonal function(EOF)analysis.Subsequently,the dominant factors in each EOF mode were determined.The results indicated that more than 95%of the variances of Rrs are partly driven by the back-scattering characteristics of the suspended matter.The initial two EOF modes were well correlated with the total suspended matter and back-scattering coefficient.Furthermore,the first EOF modes of the four classes of Rrs(A-D Rrs-EOF1)significantly contributed to the total variances of each Rrs class.In addition,the correlation coefficients between the amplitude factors of class A-D Rrs-EOF1 and the variances of the relevant water quality and optical parameters were better than those of the unclassified ones.The spectral shape of class ARrs-EOF1 was governed by the absorption characteristic of chlorophyll a and colored dissolved organic matter(CDOM).The spectral shape of class B Rrs-EOF1 was governed by the absorption characteristic of CDOM since it exhibited a high correlation with the absorption coefficient of CDOM(ag(λ)),whereas the spectral shape of class C Rrs-EOF1 was governed by the back-scattering characteristics but not affected by the suspended matter.The spectral shape of class D Rrs-EOF1 exhibited a relatively good correlation with all the water quality parameters,which played a significant role in deciding its spectral shape.展开更多
[目的]探究山东省不同气候分区年降水量的时空特征,为该地区气候分析、防灾减灾提供更加区域性的参考依据。[方法]根据山东省95个国家地面气象观测站1991—2020年降水年值数据,首先对山东省年降水场进行气候分区,然后通过相关统计方法...[目的]探究山东省不同气候分区年降水量的时空特征,为该地区气候分析、防灾减灾提供更加区域性的参考依据。[方法]根据山东省95个国家地面气象观测站1991—2020年降水年值数据,首先对山东省年降水场进行气候分区,然后通过相关统计方法分析各分区降水的时空变化特征。[结果](1)山东省各降水模态降水偏少的年份更多,降水偏多的年份降水强度更大,年代际变化均较为明显,但各模态降水偏多偏少的年份分布及强度变化有所不同。(2)山东省年降水量大致由东南向西北递减,年降水场划分为东南沿海区(Ⅰ区)、西北平原区(Ⅱ区)和中部山地区(Ⅲ区)3个区域,各降水分区年降水均呈不显著增加趋势,趋势率各不相同,突变均不明显。(3)山东省各降水分区年降水量均具有较为明显的周期性特征,东南沿海区年降水场存在2个较为明显的能量中心,中心尺度均为2~3 a,未来变化具有强持续性;西北平原区年降水场存在3个较为明显的能量中心,中心尺度分别为5~7 a, 3 a和2~3 a,未来变化具有持续性;中部山地区年降水场存在2个较为明显的能量中心,中心尺度分别为2~3 a, 6 a,未来变化具有强持续性。[结论]山东省降水偏少的年份更多,降水偏多的年份降水强度更大,年降水场大致可分为3个分区,各分区年降水量均呈不显著增加趋势,均具有较为明显的周期性特征,且未来变化均具有持续性。展开更多
A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited...A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited basis function set and then to generate a set of Empirical Orthogonal Functions (EOF’s) adaptively from the sample values of the band-limited function set. Simulation results indicate that, in addi- tion to the attractive adaptive feature, this scheme also appears to guarantee a smooth result for inexact data, thus suggesting the robustness of the proposed procedure.展开更多
In this paper,a new diagnostic method,the rotated complex empirical orthogonal function (RCEOF)analysis is developed.The general principle and the mathematical foundation of RCEOF are discussed.
The numerical solving and the program designing of the rotated complex empirical orthogonal function(RCEOF)are discussed.Some examples of RCEOF are also presented.
基金The Key Projects of the Guangdong Education Department under contract No.2019KZDXM019the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)under contract No.ZJW-2019-08+2 种基金High-Level Marine Discipline Team Project of Guangdong Ocean University under contract No.002026002009the Guangdong Graduate Academic Forum Project under contract No.230420003the"First Class"discipline construction platform project in 2019 of Guangdong Ocean University under contract No.231419026。
文摘This study presents an analysis of the spectral characteristics of remote sensing reflectance(Rrs)in northwestern South China Sea based on the in situ optical and water quality data for August 2018.Rrswas initially divided into four classes,classes A to D,using the max-classification algorithm,and the spectral properties of whole Rrs were characterized using the empirical orthogonal function(EOF)analysis.Subsequently,the dominant factors in each EOF mode were determined.The results indicated that more than 95%of the variances of Rrs are partly driven by the back-scattering characteristics of the suspended matter.The initial two EOF modes were well correlated with the total suspended matter and back-scattering coefficient.Furthermore,the first EOF modes of the four classes of Rrs(A-D Rrs-EOF1)significantly contributed to the total variances of each Rrs class.In addition,the correlation coefficients between the amplitude factors of class A-D Rrs-EOF1 and the variances of the relevant water quality and optical parameters were better than those of the unclassified ones.The spectral shape of class ARrs-EOF1 was governed by the absorption characteristic of chlorophyll a and colored dissolved organic matter(CDOM).The spectral shape of class B Rrs-EOF1 was governed by the absorption characteristic of CDOM since it exhibited a high correlation with the absorption coefficient of CDOM(ag(λ)),whereas the spectral shape of class C Rrs-EOF1 was governed by the back-scattering characteristics but not affected by the suspended matter.The spectral shape of class D Rrs-EOF1 exhibited a relatively good correlation with all the water quality parameters,which played a significant role in deciding its spectral shape.
文摘[目的]探究山东省不同气候分区年降水量的时空特征,为该地区气候分析、防灾减灾提供更加区域性的参考依据。[方法]根据山东省95个国家地面气象观测站1991—2020年降水年值数据,首先对山东省年降水场进行气候分区,然后通过相关统计方法分析各分区降水的时空变化特征。[结果](1)山东省各降水模态降水偏少的年份更多,降水偏多的年份降水强度更大,年代际变化均较为明显,但各模态降水偏多偏少的年份分布及强度变化有所不同。(2)山东省年降水量大致由东南向西北递减,年降水场划分为东南沿海区(Ⅰ区)、西北平原区(Ⅱ区)和中部山地区(Ⅲ区)3个区域,各降水分区年降水均呈不显著增加趋势,趋势率各不相同,突变均不明显。(3)山东省各降水分区年降水量均具有较为明显的周期性特征,东南沿海区年降水场存在2个较为明显的能量中心,中心尺度均为2~3 a,未来变化具有强持续性;西北平原区年降水场存在3个较为明显的能量中心,中心尺度分别为5~7 a, 3 a和2~3 a,未来变化具有持续性;中部山地区年降水场存在2个较为明显的能量中心,中心尺度分别为2~3 a, 6 a,未来变化具有强持续性。[结论]山东省降水偏少的年份更多,降水偏多的年份降水强度更大,年降水场大致可分为3个分区,各分区年降水量均呈不显著增加趋势,均具有较为明显的周期性特征,且未来变化均具有持续性。
文摘A one-step band-limited extrapolation procedure is systematically developed under an a priori assumption of bandwidth. The rationale of the proposed scheme is to expand the known signal segment based on a band-limited basis function set and then to generate a set of Empirical Orthogonal Functions (EOF’s) adaptively from the sample values of the band-limited function set. Simulation results indicate that, in addi- tion to the attractive adaptive feature, this scheme also appears to guarantee a smooth result for inexact data, thus suggesting the robustness of the proposed procedure.
基金National 9th Five-Year Project under Grant 95-11.
文摘In this paper,a new diagnostic method,the rotated complex empirical orthogonal function (RCEOF)analysis is developed.The general principle and the mathematical foundation of RCEOF are discussed.
基金Supported by the National 9th Five-Year Project under Grant 95-11.
文摘The numerical solving and the program designing of the rotated complex empirical orthogonal function(RCEOF)are discussed.Some examples of RCEOF are also presented.