期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Prediction of cavity growth rate during underground coal gasification using multiple regression analysis 被引量:8
1
作者 Mehdi Najafi Seyed Mohammad Esmaiel Jalali +1 位作者 Reza KhaloKakaie Farrokh Forouhandeh 《International Journal of Coal Science & Technology》 EI 2015年第4期318-324,共7页
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by... During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR. 展开更多
关键词 Underground coal gasification (UCG) - Cavity growth rate . Multiple regression analysis ~ empirical model
下载PDF
Weighted quantile regression for longitudinal data using empirical likelihood 被引量:1
2
作者 YUAN XiaoHui LIN Nan +1 位作者 DONG XiaoGang LIU TianQing 《Science China Mathematics》 SCIE CSCD 2017年第1期147-164,共18页
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile ... This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application. 展开更多
关键词 empirical likelihood estimating equation influence function longitudinal data weighted quantile regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部