A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear syste...A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
Stabilization of a plant with variable operating conditions was considered. The plant is assumed to lie in a set of interpolated models composed of all interpolations generated between certain sets of proper stable co...Stabilization of a plant with variable operating conditions was considered. The plant is assumed to lie in a set of interpolated models composed of all interpolations generated between certain sets of proper stable coprime factorizations of transfer functions of two representative models that are defined at two representative operating points. An interpolated controller that is linear interpolation of coprime factorizations of two stabilizing controllers for the two representative models is designed to stabilize this set of interpolated models. Design of such an interpolated controller was converted to a feasibility problem constrained by several LMIs and a BMI, and a two step iteration algorithm was employed to solve it.展开更多
According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with v...According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with variable frame length and interpolation points. The core idea is that, using interpolation method to increase the available sample data, then modeling the chaos dynamics system with least square algorithm which based on the Bernstein polynomial to realize the forecasting. We use the local modeling method, looking for the optimum frame length and interpolation points in every frame to improve the predict peformance. The experimental results show that the proposed algorithm can improve the predictive ability effectively, decreasing the accumulation of iterative errors in multi-step prediction.展开更多
GRAPES(Global/Regional Assimilation and PrEdiction System)模式动力框架中垂直方向变量的跳层设置采用Charney-Phillips分布,在整层上进行位温、水物质的计算,物理过程中在半层上对其进行处理。这样在GRAPES模式中,进入物理过程之...GRAPES(Global/Regional Assimilation and PrEdiction System)模式动力框架中垂直方向变量的跳层设置采用Charney-Phillips分布,在整层上进行位温、水物质的计算,物理过程中在半层上对其进行处理。这样在GRAPES模式中,进入物理过程之前和物理过程计算完毕之后,都要采用线性插值进行整层和半层之间物理量的转换。由于线性插值精度欠佳,为提高上述反馈过程的精度,并保证水物质的正定性。该研究引入样条插值,并在水物质的插值过程中进行保单调处理,有效减小了位温场、水物质场的预报偏差,并提升了模式的综合预报性能。展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
文摘Stabilization of a plant with variable operating conditions was considered. The plant is assumed to lie in a set of interpolated models composed of all interpolations generated between certain sets of proper stable coprime factorizations of transfer functions of two representative models that are defined at two representative operating points. An interpolated controller that is linear interpolation of coprime factorizations of two stabilizing controllers for the two representative models is designed to stabilize this set of interpolated models. Design of such an interpolated controller was converted to a feasibility problem constrained by several LMIs and a BMI, and a two step iteration algorithm was employed to solve it.
文摘According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with variable frame length and interpolation points. The core idea is that, using interpolation method to increase the available sample data, then modeling the chaos dynamics system with least square algorithm which based on the Bernstein polynomial to realize the forecasting. We use the local modeling method, looking for the optimum frame length and interpolation points in every frame to improve the predict peformance. The experimental results show that the proposed algorithm can improve the predictive ability effectively, decreasing the accumulation of iterative errors in multi-step prediction.
文摘GRAPES(Global/Regional Assimilation and PrEdiction System)模式动力框架中垂直方向变量的跳层设置采用Charney-Phillips分布,在整层上进行位温、水物质的计算,物理过程中在半层上对其进行处理。这样在GRAPES模式中,进入物理过程之前和物理过程计算完毕之后,都要采用线性插值进行整层和半层之间物理量的转换。由于线性插值精度欠佳,为提高上述反馈过程的精度,并保证水物质的正定性。该研究引入样条插值,并在水物质的插值过程中进行保单调处理,有效减小了位温场、水物质场的预报偏差,并提升了模式的综合预报性能。