We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calcul...We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calculation show that the optical pulling forces can be attributed to the recoil forces for the nanoparticle clusters composed of dipolar nanoparticles with three different configurations.Interestingly,the recoil forces giving rise to optical pulling forces are exactly dominated by the coupling term between the electric and magnetic dipoles excited in the nanoparticle clusters,while other higherorder terms have a negligible contribution.In addition,the optical pulling force can be tailored by modulating the Fano-like resonance via either the particle size or the gain magnitude,offering an alternative freedom degree for optical manipulations of particle clusters.展开更多
Radial drilling technology, of which the jet bit is the key device, is a research focus in the field of oil drilling and production. This paper establishes mechanical equations for jet bits and analyzes the hydroseal ...Radial drilling technology, of which the jet bit is the key device, is a research focus in the field of oil drilling and production. This paper establishes mechanical equations for jet bits and analyzes the hydroseal of backward jets in bottom holes. Meanwhile this paper establishes a mechanical equation for a high pressure hose and analyzes the axial force distribution. Laboratory experiments indicate that the flow rate, the angle between the backward nozzle axis and the jet bit axis, and the hole diameter are the major influencing factors; the generation of the pulling force is mainly due to the inlet pressure of the jet bit; the backward jets can significantly increase not only the pulling force but also the stability of jet bits. The pulling force would reach 8,376 N under experimental conditions, which can steadily pull the high-pressure hose forward.展开更多
To solve the difficulty of generating an ideal Bessel beam,an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF)and the corresponding negative ARF(pulling force)exerted on...To solve the difficulty of generating an ideal Bessel beam,an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF)and the corresponding negative ARF(pulling force)exerted on centered elastic spheres for acoustic-vortex(AV)beams of arbitrary orders.Based on the theory of acoustic scattering,the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated.It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions.The pulling force is more likely to exert on the sphere with a smaller k0a(product of the wave number and the radius)for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering.The pulling force decreases with the increase of the axial distance for the sphere with a bigger k0a.More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer.The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers,and suggest application potentials for multi-position stable object manipulations in biomedical engineering.展开更多
We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which ...We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.展开更多
A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated sil...A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.展开更多
Determination of the grouting anchor pullout force is a key step during the design of anchor-pull retaining wall, but it is mostly determined relied on empirical formula at present, and the rationality and the safety ...Determination of the grouting anchor pullout force is a key step during the design of anchor-pull retaining wall, but it is mostly determined relied on empirical formula at present, and the rationality and the safety cannot be effectively guaranteed. Based on the engineering case of the gravity retaining wall of Qinglin Freeway, the model test was designed, and combined with the results of the ABAQUS finite element numerical analysis, it was analyzed that how the anchor axial pulling force distributes. The results showed that the force of the anchor near the wall bolt was large and which far from the wall was small and the ultimate pullout force was proportional to the length, diameter and shear strength. When the end tension of the anchor was small, the top load played a leading role on the anchor tension. This conclusion confirmed the calculation formula of ultimate pullout force was and provided a theoretical basis for anchor-pull retaining wall design and calculation.展开更多
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic forc...We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell- Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.展开更多
In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the...In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the equation gov- erning the static behavior of nano/micromirror under electro- static and vdW forces. Then, the stability of static equilib- rium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of dif- ferent design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror. At the end, the nonlinear equilibrium equation is solved numer- ically and analytically using homotopy perturbation method (HPM). It is observed that a sixth order perturbation approx- imation can precisely model the mirror's behavior. The re- suits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.展开更多
The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharma...The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.展开更多
The rise of robotics has brought great uncertainty to the labor market.Based on the sectoral data from 22 economies during 2008-2019,this paper explores the impact of robot application on employment.The results show t...The rise of robotics has brought great uncertainty to the labor market.Based on the sectoral data from 22 economies during 2008-2019,this paper explores the impact of robot application on employment.The results show that,on the whole,robot application will have complementary effects on labor force employment,and the grouped regression by economic development level and demographic characteristics supports this conclusion,while the effect of robot application on labor force employment is significantly different by industry.Further research shows that the degree of robot use is the key factor that determines the effect of robots on employment,and the complementary effect is dominant in economies with low degree of robot application,and the subtitution effect is dominant in economies with high degree of robot application.In addition,obvious spillover effects are observed in robotic application.On the one hand,robot application will have a forward crowdingout effect and a reverse siphon effect,which drive the labor force moving from the primary industry to the secondary and tertiary industries.On the other hand,robot application will also have heterogeneous effects on the labor force employment of economies in the upstream and downstream position along the value chain through the transmission effect of the Global Value Chains(GVC).The conclusions of this paper provide some practical implications for the rational formulation of artificial intelligence plans in the context of“stabilizing employment”.展开更多
The author estimated and analyzed China's urban and rural economically active,employed and unemployed populations as well as the labor-force participation ratio and employment and unemployment rates from 2000-2008...The author estimated and analyzed China's urban and rural economically active,employed and unemployed populations as well as the labor-force participation ratio and employment and unemployment rates from 2000-2008 by referring to population census data and establishing estimation models in this paper.The research results indicate changing trends in China's urban and rural economically active population from 2000-2008.展开更多
基金Project supported by the Natural Science Foundation of Guangxi Province of China (Grant No.2021GXNSFDA196001)the National Natural Science Foundation of China (Grant Nos.12174076,12074084,and 12204117)+1 种基金Guangxi Science and Technology Project (Grant Nos.AD22080042 and AB21220052)Open Project of State Key Laboratory of Surface Physics in Fudan University (Grant No.KF2022_15)。
文摘We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calculation show that the optical pulling forces can be attributed to the recoil forces for the nanoparticle clusters composed of dipolar nanoparticles with three different configurations.Interestingly,the recoil forces giving rise to optical pulling forces are exactly dominated by the coupling term between the electric and magnetic dipoles excited in the nanoparticle clusters,while other higherorder terms have a negligible contribution.In addition,the optical pulling force can be tailored by modulating the Fano-like resonance via either the particle size or the gain magnitude,offering an alternative freedom degree for optical manipulations of particle clusters.
基金supported by High-tech Research and Development Program of China (No. 2007AA09Z315)Doctoral Foundation of Ministry of Education of China (No. 20070425006)
文摘Radial drilling technology, of which the jet bit is the key device, is a research focus in the field of oil drilling and production. This paper establishes mechanical equations for jet bits and analyzes the hydroseal of backward jets in bottom holes. Meanwhile this paper establishes a mechanical equation for a high pressure hose and analyzes the axial force distribution. Laboratory experiments indicate that the flow rate, the angle between the backward nozzle axis and the jet bit axis, and the hole diameter are the major influencing factors; the generation of the pulling force is mainly due to the inlet pressure of the jet bit; the backward jets can significantly increase not only the pulling force but also the stability of jet bits. The pulling force would reach 8,376 N under experimental conditions, which can steadily pull the high-pressure hose forward.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 11604156).
文摘To solve the difficulty of generating an ideal Bessel beam,an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF)and the corresponding negative ARF(pulling force)exerted on centered elastic spheres for acoustic-vortex(AV)beams of arbitrary orders.Based on the theory of acoustic scattering,the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated.It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions.The pulling force is more likely to exert on the sphere with a smaller k0a(product of the wave number and the radius)for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering.The pulling force decreases with the increase of the axial distance for the sphere with a bigger k0a.More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer.The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers,and suggest application potentials for multi-position stable object manipulations in biomedical engineering.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11904184, 11847033, and 11704158)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK20170170)。
文摘We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50575123 and 50730007)China Scholarship Council (CSC) and German Research Foundation (DFG)
文摘A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.
文摘Determination of the grouting anchor pullout force is a key step during the design of anchor-pull retaining wall, but it is mostly determined relied on empirical formula at present, and the rationality and the safety cannot be effectively guaranteed. Based on the engineering case of the gravity retaining wall of Qinglin Freeway, the model test was designed, and combined with the results of the ABAQUS finite element numerical analysis, it was analyzed that how the anchor axial pulling force distributes. The results showed that the force of the anchor near the wall bolt was large and which far from the wall was small and the ultimate pullout force was proportional to the length, diameter and shear strength. When the end tension of the anchor was small, the top load played a leading role on the anchor tension. This conclusion confirmed the calculation formula of ultimate pullout force was and provided a theoretical basis for anchor-pull retaining wall design and calculation.
文摘We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell- Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
文摘In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the equation gov- erning the static behavior of nano/micromirror under electro- static and vdW forces. Then, the stability of static equilib- rium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of dif- ferent design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror. At the end, the nonlinear equilibrium equation is solved numer- ically and analytically using homotopy perturbation method (HPM). It is observed that a sixth order perturbation approx- imation can precisely model the mirror's behavior. The re- suits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.
文摘The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.
基金supported by the General Project of National Social Science Fund of China,“Study on the evaluation and promoting stategies on the AI Industry development in China”(18BJY014)the planning project of Philosophy and Social Science of Anhui Province,“Research on the Changes in Quantity and Structure of Employment in Anhui Province driven by AI Applications under the background of Digital Economy(AHSKY2022D049)”.
文摘The rise of robotics has brought great uncertainty to the labor market.Based on the sectoral data from 22 economies during 2008-2019,this paper explores the impact of robot application on employment.The results show that,on the whole,robot application will have complementary effects on labor force employment,and the grouped regression by economic development level and demographic characteristics supports this conclusion,while the effect of robot application on labor force employment is significantly different by industry.Further research shows that the degree of robot use is the key factor that determines the effect of robots on employment,and the complementary effect is dominant in economies with low degree of robot application,and the subtitution effect is dominant in economies with high degree of robot application.In addition,obvious spillover effects are observed in robotic application.On the one hand,robot application will have a forward crowdingout effect and a reverse siphon effect,which drive the labor force moving from the primary industry to the secondary and tertiary industries.On the other hand,robot application will also have heterogeneous effects on the labor force employment of economies in the upstream and downstream position along the value chain through the transmission effect of the Global Value Chains(GVC).The conclusions of this paper provide some practical implications for the rational formulation of artificial intelligence plans in the context of“stabilizing employment”.
文摘The author estimated and analyzed China's urban and rural economically active,employed and unemployed populations as well as the labor-force participation ratio and employment and unemployment rates from 2000-2008 by referring to population census data and establishing estimation models in this paper.The research results indicate changing trends in China's urban and rural economically active population from 2000-2008.