期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Rheology of typical emulsifiers and effects on stability of emulsion explosives 被引量:2
1
作者 王丽琼 王娜峰 方杰 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期295-300,共6页
Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relation... Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relations between rheology and structural properties of typical emulsifiers were analyzed. Experimental results show that viscosity of emulsifiers didn' t change with shear rate at room temperature and appeared properties of Newtonian fluid. Viscosity of different component emulsifiers declines with temperature in different modes. The change of strain doesn' t affect modu- lus of emulsifiers. Loss modulus increases linearly with the increase of frequency in oscillation and storage modulus does non-linearly. The higher the temperature is, the lower change amplitude of loss modulus with frequency will be. The emulsifiers with imide and amide functionality for emulsion explosives have better shear properties at high temperature and better shapingness and stability at room temperature than other emulsifiers with ester and Sorbin Monoleate (SMO) functionality. 展开更多
关键词 emulsion explosives EMULSIFIERS hydrophile-lipophile balance HLB RHEOLOGY viscosity modulus stability
下载PDF
An optimizing selection model in preparation of powdery emulsion explosives 被引量:2
2
作者 BaofuDuan XuguangWang JinquanSong 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期1-4,共4页
In order to get cheap and excellent PEE (Powdery Emulsion Explosives), themodel of optimizing selection on preparation of PEE was established by the Neural Net Theory (NNT).On the basis of some data in the study of PE... In order to get cheap and excellent PEE (Powdery Emulsion Explosives), themodel of optimizing selection on preparation of PEE was established by the Neural Net Theory (NNT).On the basis of some data in the study of PEE, the training, prediction and optimizing selection ofthe Neural Net (NN) model were finished by compiling procedures. The results indicate that the modelis helpful to the preparation of PEE and worthy to extend and apply broadly. 展开更多
关键词 neural net powdery emulsion explosives PREPARATION optimizing selection
下载PDF
Effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives sensitized by glass microballoons 被引量:1
3
作者 Ji-ping Chen Hong-hao Ma +2 位作者 Yi-xin Wang Liang-liang Huang Zhao-wu Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期747-754,共8页
In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteris... In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated.Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity.The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure.The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives.Compared with the traditional emulsion explosives,the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6%at 1.0 m and 10.2%at 1.2 m,the maximum values of shock impulse increase by 5.7%at 1.0 m and 19.4%at 1.2 m.The stored hydrogen has dual effects of sensitizers and energetic additives,which can improve the energy output of emulsion explosives. 展开更多
关键词 emulsion explosives Hydrogen-storage pressure Glass microballoons Underwater explosion
下载PDF
Influence of an emulsifier on the pressure desensitization of emulsion explosives 被引量:4
4
作者 Yinjun Wang Xuguang Wang Shilong Yah 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期102-107,共6页
The desensitization degree of emulsion explosives (EE) was calculated with the peak pressure of explosion shock waves tested in water. To an explosive, the less the desensitization degree, the better the compression... The desensitization degree of emulsion explosives (EE) was calculated with the peak pressure of explosion shock waves tested in water. To an explosive, the less the desensitization degree, the better the compression resistance, so the compression resistance of an explosive can be compared and analyzed quantificationally with the desensitization degree. The influence of an emulsifier on the pressure desensitization of EE was studied, including the content and category of emulsifiers. Three kinds of emulsifiers (Span-80, compound emulsifier, and T-152) were used in the tests. The experimental results show that both the content and category of emulsifiers make a great effect on the pressure desensitization of EE. The desensitization degree of EE reduces with the emulsifier content being increased, but there is an optimal content of an emulsifier for the compression resistance of EE. While the content of Span-80 reaches 4wt%, the desensitization degree of EE becomes a minimal value, and augments somewhat if the emulsifier content is increased more. That is to say, the compression resistance of EE becomes the highest while the content of Span-80 is 4wt%, and the compression resistance will decline if the content of Span-80 is increased more. The compression resistance of the explosive emulsified by compound emulsifier is the highest among all the explosives, when the content of the whole components and manufacturing engineering are kept invariable. 展开更多
关键词 emulsion explosive EMULSIFIER pressure desensitization shock wave compression resistance
下载PDF
Explosion temperature mapping of emulsion explosives containing TiH_(2)powders with the two-color pyrometer technique 被引量:3
5
作者 Yu-Le Yao Yang-Fan Cheng +4 位作者 Qi-Wei Zhang Yu Xia Fang-Fang Hu Quan Wang Yuan Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1834-1841,共8页
In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction... In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction of TiH_(2)powders could significantly increase the explosion temperature and fireball duration of emulsion explosive.When emulsion explosives were ignited,the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH_(2)powders increased at first and then decreased.When the content of TiH_(2)powders was 6 mass%,the explosion average temperature reached its maximum value of 3095 K,increasing by 43.7%as compared with that of pure emulsion explosive.In addition,the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters,explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH_(2)powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique.In conclusion,the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics. 展开更多
关键词 Two-color pyrometer emulsion explosive Explosion temperature field Explosion heat
下载PDF
Prediction of concentration of toxic gases produced by detonation of commercial explosives by thermochemical equilibrium calculations
6
作者 Muhamed Suceska B.Stimac Tumara +1 位作者 Vinko Skrlec Sinisa Stankovic 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第12期2181-2189,共9页
An adverse effect resulting from explosive mine blasts is the production of toxic nitrogen oxides(NO and NO_(2)) and carbon monoxide(CO).The empirical measurements of the concentration of toxic gases showed that it de... An adverse effect resulting from explosive mine blasts is the production of toxic nitrogen oxides(NO and NO_(2)) and carbon monoxide(CO).The empirical measurements of the concentration of toxic gases showed that it depends not only on the composition of an explosive and properties of its ingredients but also on several other parameters,such as volume of blasting chamber,explosive charge mass and design,confinement characteristics,surrounding atmosphere,etc.That explains why measured concentrations of toxic gases reported in literature significantly differ.In this paper,we discuss the possibility of theoretical prediction of the concentration of toxic gases by thermochemical equilibrium calculation applying two models:ideal detonation model and deflagration model.It can be demonstrated that thermochemical calculations can provide a good estimation of the measured concentrations and reproduce experimentally obtained effects of additives on the production of toxic gases.It was also found that the ideal detonation model applies to heavily confined explosive charges,while the deflagration model is more suitable for low detonation velocity explosives with light confinement. 展开更多
关键词 Mining ANFO emulsion explosive Toxic fumes Thermochemical code EXPLO5
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部