L-aspartic acid (Asp) pillared hydrotalcites were prepared by direct reaction of the L-Asp anion with layered double hydroxides (LDHs). The obtained samples were characterized by X-ray diffractometry (XRD), Four...L-aspartic acid (Asp) pillared hydrotalcites were prepared by direct reaction of the L-Asp anion with layered double hydroxides (LDHs). The obtained samples were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR), and thermogravimetric and differential thermal analysis (TG/DTA). The results show that the initial interlayer carbonate ions can be completely replaced by the L-Asp anion under the controlled conditions. The pillared hydrotalcites have a crystallized supramolecular structure and thermal stability. The L-Asp pillared LDHs were used in the enantiosorption of enantiopure phenylalanine (Pile), the results suggest that L-Asp pillared LDHs exhibit an excellent enantiosorption capability for D-Phe, and the adsorption isotherm fits Freundlich equation.展开更多
基金Project(20376085) supported by the National Natural Science Foundation of ChinaProject(05C053) supported by Education Department of Hunan Province, China
文摘L-aspartic acid (Asp) pillared hydrotalcites were prepared by direct reaction of the L-Asp anion with layered double hydroxides (LDHs). The obtained samples were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR), and thermogravimetric and differential thermal analysis (TG/DTA). The results show that the initial interlayer carbonate ions can be completely replaced by the L-Asp anion under the controlled conditions. The pillared hydrotalcites have a crystallized supramolecular structure and thermal stability. The L-Asp pillared LDHs were used in the enantiosorption of enantiopure phenylalanine (Pile), the results suggest that L-Asp pillared LDHs exhibit an excellent enantiosorption capability for D-Phe, and the adsorption isotherm fits Freundlich equation.