The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to d...The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.展开更多
The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been docu...The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber.展开更多
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th...The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.展开更多
Paired assistance is an important means for developed regions to help lessdeveloped regions achieve common prosperity.Despite its advantages,governmentmandated paired assistance tends to be less effective due to the l...Paired assistance is an important means for developed regions to help lessdeveloped regions achieve common prosperity.Despite its advantages,governmentmandated paired assistance tends to be less effective due to the lack of economic incentives for assisting localities.Therefore,local governments in China have explored an incentivecompatible paired assistance model.Based on the paired assistance between cities in the Pearl River Delta(PRD)region and the eastern,western and northern parts of Guangdong Province,this study designed a natural experiment for the network relationship of paired assistance.Empirical results based on industrial and commercial registration data and land transfer data indicate that paired assistance has enhanced bilateral investment linkages,and that the inter-regional benefit sharing mechanism has incentivized assisting localities to provide paired assistance.Our heterogeneity analysis reveals that a shorter distance between assisting and beneficiary localities may lead to better results of paired assistance.This study contributes to the understanding of incentive mechanisms for local government cooperation and offers insights for balancing regional development and achieving common prosperity.展开更多
文摘The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.
基金UGC-Dr.D.S.Kothari Postdoctoral FellowshipNo.F.4-2/2006(BSR)/ES/20-21/0005supported under a research grant[Mo ES/P.O.(Geo)/101(v)/2017]to SK。
文摘The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber.
基金supported by the Iran National Science Foundation(INSF)(Grant No.98012578)projects from the National Natural Science Foundation of China(Grant Nos.41473033,41673031)。
文摘The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.
基金supported by the National Natural Science Fund of China(NSFC)under the project“Civil Rights,Collective Welfare and Local Finance:A Natural Experiment of the Real Estate Market”(Grant No.71973080).
文摘Paired assistance is an important means for developed regions to help lessdeveloped regions achieve common prosperity.Despite its advantages,governmentmandated paired assistance tends to be less effective due to the lack of economic incentives for assisting localities.Therefore,local governments in China have explored an incentivecompatible paired assistance model.Based on the paired assistance between cities in the Pearl River Delta(PRD)region and the eastern,western and northern parts of Guangdong Province,this study designed a natural experiment for the network relationship of paired assistance.Empirical results based on industrial and commercial registration data and land transfer data indicate that paired assistance has enhanced bilateral investment linkages,and that the inter-regional benefit sharing mechanism has incentivized assisting localities to provide paired assistance.Our heterogeneity analysis reveals that a shorter distance between assisting and beneficiary localities may lead to better results of paired assistance.This study contributes to the understanding of incentive mechanisms for local government cooperation and offers insights for balancing regional development and achieving common prosperity.